HP 11729B CARRIER NOISE TEST SET

(Including Options 003, 007, 011, 015, 019, 023, 027, 130 and 140)

SERIAL NUMBERS

This manual applies directly to instruments with serial numbers prefixed 2435A.

With changes described in Section VII, this manual also applies to instruments with serial numbers prefixed 2329A, 2345A, 2412A and 2428A.

For additional important information about serial numbers, see INSTRUMENTS COVERED BY THIS MANUAL in Section I.

Use Appendix A and B for Instruments formerly known as HP 11729B Low Noise Down Converters.

Appendix A contains the necessary backdating information to use this manual with all HP 11729B Low Noise Down Converters prefixed 2319A and below.

Appendix B contains an explanation of the H and K Options used in ordering HP 11729B Low Noise Down Converters.

© Copyright HEWLETT-PACKARD COMPANY 1984
1501 PAGE MILL ROAD, PALO ALTO, CALIFORNIA, U.S.A.

OPERATING AND SERVICE MANUAL PART NUMBER: 11729-90015

MICROFICHE PART NUMBER: 11729-90016

Printed: NOVEMBER 1984

COPYRIGHT AND DISCLAIMER NOTICE

Copyright – Agilent Technologies, Inc. Reproduced with the permission of Agilent Technologies Inc. Agilent Technologies, Inc. makes no warranty of any kind with regard to this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Agilent Technologies, Inc. is not liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material or data.

CARRIER NOISE TEST SET

MANUAL IDENTIFICATION

Model Number: HP 11729B Date Printed: Nov. 1984 Part Number: 11729-90015

This supplement contains important information for correcting manual errors and for adapting manual to instruments containing improvements made after the printing of the manual.

To use this supplement:

Make all ERRATA corrections

Make all appropriate serial number related changes indicated in the tables below.

Serial Prefix or Number 2439A		Make Manual Changes 1			Serial Prefix or Number	_	Make Manual Changes
	-		\neg				
				1			

► NEW ITEM

ERRATA

Sections I through VIII Appendices A through D:

In all sections and appendices change " $\mathscr{L}_{\mathbf{f}}$ " to " $\mathscr{L}(\mathbf{f})$ " and "S ϕ " to "S $\phi(\mathbf{f})$ ".

▶Page 1-3, paragraph 1-9:

Under Mechanical Options, make the following part number changes:

Change "1494-0026" to "1494-0063".

Change "5061-0088" to "5061-9688".

Change "5061-0074" to "5061-9674".

Change "5061-0075" to "5061-9675".

Page 3-21, paragraph 17:

In the eleventh paragraph under paragraph 17 change "to convert the measured phase noise to single sideband" to "\$\mathcal{L}\$ conversion factor".

▶Page 4-6, Step 12:

Change "425" to "625".

Page 6-13, Table 6-2:

A9C40. Change the part number for A9C40 to the following:

0180-0116 CD1

Page 6-14, Table 6-2:

A9U33. The recommended replacement for A9U33, if it fails, is found in CHANGE 1.

A9U34. The recommended replacement for A9U34, if it fails, is found in CHANGE 1.

 $\pmb{\mathsf{A10}}.$ Change the part number for the A10 assembly to the following:

11729-60086 CD7.

NOTE

Manual change supplements are revised as often as necessary to keep manuals as current and accurate as possible. Hewlett-Packard recommends that you periodically request the latest edition of this supplement. Free copies are available from all HP offices. When requesting copies quote the manual identification information from your supplement, or the model number and print date from the title page of the manual.

27 August 1985 3 Pages

ERRATA (cont'd)

Page 6-14, Table 6-2 (cont'd):

Add the following to the description for the A10 assembly:

(Order the following Service Note and resistors if the A10 assembly is replaced: Service Note 11729-90001 CD9 and two resistors [8159-0005 CD0]. The Service Note will explain where the resistors are to be installed.)

Page 6-20, Table 6-2:

MP105. Change the part number for MP106 to the following: 5020-8801 CD4.

Page 6-22, Table 6-2:

MP173 (Option 140). The recommended replacement for MP173, if it needs to be replaced, is found in CHANGE 1.

▶Page 6-24, Table 6-2:

MP269 through MP272. The recommended replacements for MP269 through MP272, if they need to be replaced, are found in CHANGE 1.

MP302. The recommended replacement for MP302, if it needs to be replaced, is found in CHANGE 1.

Page 6-32, Table 6-2:

S11. The recommended replacement for S11, if it fails, is found in CHANGE 1.

Page 6-33, Table 6-2:

W47. Add the following part number and description below W47: 11729-20095 CD4 CABLE ASSEMBLY (OPTION 140).

Page 7-2, CHANGE D:

Add the following before "Delete A9C40":

Change the part number for A9C4-9, A9C13-20 and A9C23-36 to the following: 0160-0576 CD5.

Service Sheet BD1:

Replace the portion of the Low Pass Filter and Low Noise Amplifier Circuits (right side of service sheet) with Figure 1.

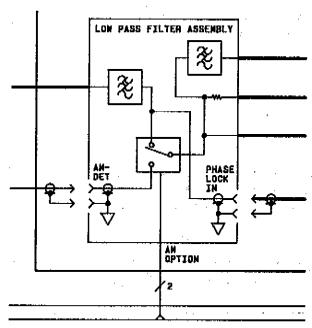


Figure 1. P/O Low Pass Filter and Low Noise Amplifier Circuits

ERRATA (cont'd)

Page A-1, Appendix A:

Under MANUAL CHANGES change "Table 6-3" to "Table 6-2".

- Delete what is now shown as the addition to the description for the A10 assembly.
- ▶ Add the following as the addition to the description for the A10 Assembly:

 If the A10 assembly has to be replaced, there are two different amplifier replacement kits available.

 Order 11729-60122 CD2 if the prefix of the Carrier Noise Test is 2319A and below; order 11729-60123

 CD3 if the prefix of the Carrier Noise Test Set is 2329A and above.

Below the addition to the description for the A10 assembly add the following: Change the part number for MP173 to the following: 11729-00006 CD5.

Service Sheet 7 (Appendix):

R27 and R29. At the output of the +15 VOLT REGULATOR change the value of R27 to "100 Ohms" and the value of R29 to "42.2 Ohms".

On the upper right side of the schematic, change the voltage above the rectangle with the F inside to +2.8V.

Page C-1, Appendix C:

In the third sentence of the first paragraph under NORMALIZATION TO 1 HZ EQUIVALENT NOISE BANDWIDTH, change "Field Effect Transistor (F.E.T.)" to "Fast Fourier Transform (F.F.T.)".

CHANGE 1

Page 6-9, Table 6-2:

A6A1E3. Add A6A1E3 using the following part number and description: 9170-0962 CD3 CORE SHIELDING BEAD

Page 6-12, Table 6-2:

A9C4-9, A9C13-20 and A9C23-35. Change the part numbers for A9C4-9, A9C13-20 and A9C23-35 to the following: 0160-4835 CD7

Page 6-13, Table 6-2:

A9C36. Change the part number for A9C36 to the following: 0160-4835 CD7

Page 6-14. Table 6-2:

A9033. Change the part number and description for A9U33 to the following: 1820-8513 CD7 IC TRANSCEIVER TTL S INSTR-BUS IEEE-488.

A9U34. Change the part number and description for A9U34 to the following: 1820-3431 CD8 IC TRANSCEIVER TTL S INSTR-BUS IEEE-488.

Page 6-22, Table 6-2:

MP173. Change the part number for MP173 to the following: 11729-00058 CD2.

Page 6-24, Table 6-2:

MP266. Change the part number for MP266 to the following: 11729-00040 CD7.

- ▶ MP269 through MP272. Change the part number and description for MP269 through MP272 to the following: 2200-0123 CD6 SCREW-MACH 4-40 1.25-IN-LG PAN-HD POZI
- ▶ MP302. Change the part number and description for MP302 to the following: 3160-0483 CD6 FAN GRILL

Page 6-32. Table 6-2:

\$11. Change the part number for \$11 to the following: 3101-1973 CD7.

Service Sheet 2 (schematic):

On the A6A1 assembly add a shielding bead at the base of Q2.

CONTENTS

]	Page	Page
Section I		Measurement Frequency Range,
GENERAL INFORMATION		IF Output Bandwidth and
Introduction	. 1-1	Level Performance Tests 4-1
Specifications		Residual Phase Noise Performance Test
Safety Considerations	1-1	(Using a test signal less than 1280 MHz) 4-4
Instruments Covered by This Manual		Residual Phase Noise Performance Test
Manual Changes Supplement		(Using a test signal of 10 GHz) 4-9
Description		AM Noise Floor Performance Test 4-14
Options		
Electrical Options	1-2	Section V
Mechanical Options	. 1-3	ADJUSTMENTS
Accessories Supplied	1-3	Introduction 5-1
Equipment Required But Not Supplied	1-3	Safety Considerations 5-1
Electrical Equipment Available	1-3	Equipment Required 5-1
Recommended Test Equipment	1-4	Factory Selected Components 5-1
		Related Adjustments 5-1
Section II		Power Supply Adjustment 5-2
INSTALLATION		Phase Lock Indicator Adjustment 5-3
Introduction	2-1	Option Switch Adjustment 5-8
Initial Inspection		Attenuator AT1 Selection 5-10
Preparation For Use		
Power Requirements		Section VI
\angle !\textstyle\		REPLACEABLE PARTS
Power Cables	2-1	Introduction 6-1
HP-IB Address Selection		Abbreviations 6-1
Interconnections		Replaceable Parts List 6-1
Mating Connectors		Factory Selected Parts (*) 6-1
Operating Environment		Parts List Backdating (†)
Bench Operation		Parts List Updating (Change Sheet) 6-1
Rack Mounting	2-5	Illustrated Parts Breakdown 6-1
Storage and Shipment		Hardware 6-1
Environment		Ordering Information
Packaging	2-5	Recommended Spares List 6-2
Section III		Section VII
OPERATION		MANUAL CHANGES
Introduction	3-1	Introduction 7-1
Local Operation	3-1	Manual Changes 7-1
Remote Operation (HP-IB)		Manual Change Instructions 7-1
Operator's Checks	3-1	Section VIII
Operator's Maintenance		SERVICE
Operator's Checks	3-7	Introduction 8-1
General Operating Instructions		Service Sheets
Turn On	3-14	Block Diagrams
Phase Noise Measurement		Schematics 8-1
Phase Detector Method		Safety Considerations
Frequency Discriminator Method		Before Applying Power
AM Measurement (Option 130 only)	3-24	Safety8-1
		Recommended Test Equipment 8-1
Section IV		Service Tools, Aids and Information 8-1
PERFORMANCE TESTS		Pozidriv Screwdrivers 8-1
Introduction	4-1	Tuning Tools 8-2
Equipment Required		Heat Staking Tools 8-2
Test Record		Hardware 8-2
Calibration Cycle	4-1	Maintenance 8-2

CONTENTS (cont'd)

		Page		Page
		Appendix A A-1 Manual Changes Required For Use	PI	Appendix C C-1 hase Noise Measurement Correction Factors
		With HP Low Noise Down Converters	Nort	nalization to 1 Hz Equivalent
	- .		No	oise Bandwidth C-1
		oduction A-1		bration Attenuation
	Man	nual Changes A-1		Conversion Factor
				ection for Log Amplifiers and Peak
		Adia B		tectors in Analog Spectrum Analyzers C-3
		Appendix B B-1	Freq	uency Discriminator Correction Factor C-3
		Options Used To Order HP Low Noise Down Converters		Appendix D D-1
	Low Noise Down Converters			Phase Lock Loop Characterization
		ILLUSTF	RATIO	ONS
	Figu	are Page	Figu	re Page
	1.1	HP Model 11729B Carrier Noise	6.2	Chassis Parts 6-21
	1-1.	Test Set with Accessories Supplied 1-0		Front Panel Parts 6-23
		168t Get with Accessories Supplied 1-0		Rear Panel Parts 6-25
Λ	9_1	Line Voltage and Fuse Selection 2-2		Switch Assembly Mechanical Parts 6-27
<u> </u>	2-2	Power Cable and Mains Plug		Power Supply and Low Noise
	4-4.	Part Numbers 2-2	0-0.	Amplifier Mechanical Parts 6-29
	กา	Hewlett-Packard Interface Bus	6.7	A9 Assembly Mechanical Parts 6-31
	Z•0.	Connection 2-4	0-7.	As Assembly Mechanical Lans 0-01
		Connection	71	P/O Microprocessor Board Assembly
	3-1	Front Panel Features 3-2	7-1.	Component Locations (P/O Change A) 7-3
		Rear Panel Features 3-5	7.9	P/O Microprocessor Board Assembly
		Basic Functional Checks Test Setup 3-7	1-2.	Component Locations (P/O Change A) 7-4
		Displaying HP-IB Address 3-11	7.0	
		Interconnections to the Carrier Noise Test	7-5.	P/O Microprocessor Board Assembly
	00,	Set when making a Phase Noise	P7 4	Component Locations (P/O Change A) 7-5
		Measurement (Using the Phase	7-4.	P/O Microprocessor Board Assembly
		Detector Method		Component Locations (P/O Change D) 7-6
	2.6	Spectrum Analyzer Displays Used for	7-5.	P/O Microprocessor Board Assembly
	J-0.	Acquiring Phase Lock (Quadrature) 3-19		Component Locations (P/O Change D) 7-7
	97	Front Panel Phase Lock (Quadrature)	7-6.	P/O Microprocessor Board Assembly
	0-1.	Indicator 3-20		Component Locations (P/O Change D) 7-8
	0.0	Interconnections to the Carrier Noise		O 11 D1 D1 D2 9.17
	o-o.	Test Set When Making a Phase Noise Mea-		Overall Functional Block Diagram 8-17
		surement (Using the Frequency	8-2.	Reference Up-Conversion, Test Signal
		Discriminator Method)3-22		Down-Conversion and Phase Detecting
	0.0	Interconnections to the Carrier Noise		Assembly Component Locations 8-19
	ა-ა.		8-3.	Reference Up-Conversion, Test Signal
		Test Set When Making an AM Noise		Down-Conversion and Phase Detecting
		Measurement 3-25	_	Circuits Schematic Diagram 8-19
	4-1	Measurement Frequency Range, IF Output	8-4.	Low Pass Filter Board Assembly
		Bandwidth and Level Test Setup 4-2		Component Locations 8-20
	4-2.	Residual Phase Noise Test Setup (Using a	8-5.	Low Noise Amplifier Assembly
		Test Signal of Less Than 1280 MHz) 4-5		Component Locations 8-21
	4.3	Residual Phase Noise Test Setup	8-6.	Low Pass Filter and Low Noise
	10.	(Using a Test Signal of 10 GHz) 4-10		Amplifier Schematic Diagrams 8-21
	4.4	AM Noise Floor Test Setup 4-15	8-7.	Phase Lock Board Troubleshooting
	- F.	The state of the s	_	Test Setup 8-22
	5-1.	+5.0 Vdc Power Supply Adjustment Setup 5-2	8-8.	Indicator Board Assembly
	5-2.	Phase Lock Indicator Adjustment Setup 5-3	_	Component Locations 8-23
	5-3.	Attenuator Selection Test Setup 5-10	8-9.	Phase Lock Board Assembly
				Component Locations 8-23
	6-1	External Mechanical Parts 6-19	8-10.	Phase Lock Circuit Schematic Diagram 8-23

ILLUSTRATIONS (cont'd)

Figure	Page	Figure	Page
8-11. Simplified HP-IB Handshake between a Talker (Computer Controller) and One		A-1 P/O Servic	APPENDIX A e Sheet 3 Phase Lock
Listener (Carrier Noise Test Set)	. 8-24		Schematic Diagram A-2
8-12. Indicator Board Assembly			nctional Block Diagram A-3
Component Locations	. 8-24		Jp-Conversion, Test Signal
8-13. HP-IB Interconnect Board Assembly		Down-Co	nversion and Phase Detecting
Component Locations	. 8-25		Schematic Diagram A-5
8-14. Front Panel Key and Display Board			Filter and Low Noise
Assembly Component Locations	. 8-25		Schematic Diagram A-7
8-15. Microprocessor Board Assembly	0.07		HP-IB Handshake between
8-16. Data Input Circuit Schematic Diagram	. 8-27		(Computer Controller) and One
8-17. HP-IB Interconnect Board Assembly	. 0-21		(Carrier Noise Test Set) A-8 ssor Board Assembly
Component Locations	8.30		ent Locations A-9
8-18. Microprocessor Board Assembly	. 0-00	4-7. Data Input	
Component Locations	. 8-31		c Diagram A-9
8-19. Data Processing Circuits			ssor Board Assembly
Schematic Diagram	. 8-31	Compone	nt Locations A-13
8-20. Front Panel Key and Display Board		A-9. Data Proce	
Assembly Component Locations	. 8-34		c Diagram A-13
8-21. Microprocessor Board Assembly			ssor Board Assembly
Component Locations	. 8-35		nt Locations A-17
8-22. Switch and LED Control Circuits	0.05		LED Control Circuits
Schematic Diagram 8-23. Power Supply Board Assembly	. ტ-კე		c Diagram A-17
Component Locations	9.37	A-12. Power Supp Schomoti	c Diagram A-19
8-24. Power Supply Circuits	. 0-07	Deneman	•
Schematic Diagram	. 8-37		APPENDIX D
J			ase Lock Loop Filter Characteristic D-2
		1	
	TABI	-	
Table	Page	Table	Page
1-1. Specifications	. 1-4	5-3. Definition of	of Option Switch S1 5-8
1-2. Supplemental Characteristics	1-6	س میں ی	
1-3. System Specifications 1-4. Recommended Test Equipment			Designations and
1-4. Recommended Test Equipment	1-9	Abbrevia 3-2. Replaceable	tions 6-3 e Parts 6-5
Test Equipment	1_7.7		f Manufacturers 6-34
Topo Industry		o. Code marc	i Minimizeouters 00±
2-1. Allowable HP-IB Address Codes	2-3	'-1. Manual Ch	anges by Serial Number 7-1
		3-1. Etched Circ	cuit Soldering Equipment 8-2
3-1. IF Output Check			Diagram Notes 8-3
3-2. Status Bits and Their Decimal Equivalents			for Verifying
for Two Phase Lock Conditions		Address I	Decoding 8-24
3-3. HP-IB Message Reference Table		4. Signatures	for Verifying Microprocessor
3-4. HP-IB Program Codes		and Inpu	t/Output Operation 8-24
o-o. Anowabie IXF-ID Address Codes	. o-Z9		for Verifying
4.1 IF Output Lored	4.5		Decoding 8-28
4-1. IF Output Level			for Verifying ROM Operation
4 B. I GITOTHIANCE TEST INCOME,,,,,,,,,	, 1 -10		Stored in ROM 8-28
5-1. Factory Selected Components	5_1		for Verifying cessor, ROM, RAM
5-2. Phase Lock and Unlock Status Bits			Buffer Operation 8-29
The state of the s			

TABLES (cont'd)

Table	e	Page	Table Pag	e
8-8.	Signatures Verifying Address Decoding Using a Falling Edge		A-3. Signatures for Verifying Address Decoding	.0
	Clock Trigger	8-32	A-4 Signatures for Verifying ROM	
8-9.	Signatures Verifying		Operation and Data Stored in Rom A-1	0
	Address Decoding Using a Rising		A-5. Signatures for Verifying Microprocessor,	
	Edge Clock Trigger	8-32	ROM, RAM and Data Buffer	
8-10.	Signatures Verifying Microprocessor		Operation A-1	1
	and Relay Circuitry Operation	8-32	A-6. Signatures Verifying Address Decoding	
	• •		Using a Falling Edge Clock Trigger A-1	4
	APPENDIX A		A-7. Signatures Verifying Address	
A-1.	Signatures for Verifying Address		Decoding Using a Rising Edge Clock	
	Decoding	. A-8	Trigger A-1	4
A-2.	Signatures for Verifying Microprocessor		A-8. Signatures Verifying Microprocessor and	
	and Input/Output Operation	. A-8	Relay Circuitry Operation A-1	4

SAFETY CONSIDERATIONS

GENERAL

This product and related documentation must be reviewed for familiarization with safety markings and instructions before operation.

This product is a Safety Class I instrument (provided with a protective earth terminal).

BEFORE APPLYING POWER

Verify that the product is set to match the available line voltage and the correct fuse is installed.

SAFETY EARTH GROUND

An uninterruptible safety earth ground must be provided from the main power source to the product input wiring terminals, power cord, or supplied power cord set.

WARNINGS

Any interruption of the protective (grounding) conductor (inside or outside the instrument) or disconnecting the protective earth terminal will cause a potential shock hazard that could result in personal injury. (Grounding one conductor of a two conductor outlet is not sufficient protection.) In addition, verify that a common ground exists between the unit under test and this instrument prior to energizing either unit.

Whenever it is likely that the protection has been impaired, the instrument must be made inoperative and be secured against any unintended operation.

If this instrument is to be energized via an autotransformer (for voltage reduction) make sure the common terminal is connected to neutral (that is, the grounded side of the mains supply).

Servicing instructions are for use by servicetrained personnel only. To avoid dangerous electric shock, do not perform any servicing unless qualified to do so.

Adjustments described in the manual are performed with power supplied to the instrument

while protective covers are removed. Energy available at many points may, if contacted, result in personal injury.

Capacitors inside the instrument may still be charged even if the instrument has been disconnected from its source of supply.

For continued protection against fire hazard, replace the line fuse(s) only with 250V fuse(s) of the same current rating and type (for example, normal blow, time delay, etc.). Do not use repaired fuses or short circuited fuseholders.

SAFETY SYMBOLS

Instruction manual symbol: the product will be marked with this symbol when it is necessary for the user to refer to the instruction manual (see Table of Contents for page references).

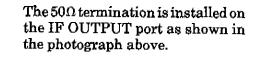
Indicates hazardous voltages.

Indicates earth (ground) terminal.

WARNING

The WARNING sign denotes a hazard. It calls attention to a procedure, practice, or the like, which, if not correctly performed or adhered to, could result in personal injury. Do not proceed beyond a WARNING sign until the indicated conditions are fully understood and met.

CAUTION


The CAUTION sign denotes a hazard. It calls attention to an operating procedure, practice, or the like, which, if not correctly performed or adhered to, could result in damage to or destruction of part or all of the product. Do not proceed beyond a CAUTION sign until the indicated conditions are fully understood and met.

HP 11729B

BNC TERMINATION

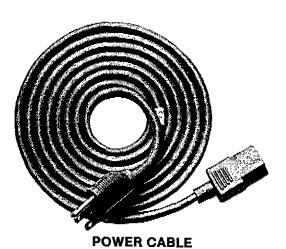


Figure 1-1. HP Model 11729B Carrier Noise Test Set with Accessories Supplied

SECTION I GENERAL INFORMATION

1-1 INTRODUCTION

This manual contains information required to install, operate, test, adjust and service the Hewlett-Packard Model 11729B Carrier Noise Test Set. Figure 1-1 shows the Carrier Noise Test Set with all of its externally supplied accessories.

The Carrier Noise Test Set Operating and Service manual has eight sections. The subjects addressed are:

Section I, General Information Section II, Installation Section III, Operation Section IV, Performance Tests Section V, Adjustments Section VI, Replaceable Parts Section VII, Manual Changes Section VIII, Service

Listed on the title page of this manual, below the manual part number, is a microfiche part number. This number may be used to order 100 x 150 millimetre (4 x 6 inch) microfilm transparencies of this manual. Each microfiche contains up to 96 photo-duplicates of the manual pages. The microfiche package also includes the latest Manual Changes supplement, as well as all pertinent Service Notes.

1-2. SPECIFICATIONS

Instrument specifications are listed in Table 1-1. These specifications are the performance standards or limits against which the instrument may be tested. Supplemental characteristics are listed in Table 1-2. Supplemental characteristics are not warranted specifications, but are typical characteristics included as additional information for the user. Typical system performance when using the Carrier Noise Test Set with the HP 8662A or 8663A is given in Table 1-3.

1-3. SAFETY CONSIDERATIONS

This product is a Safety Class I instrument, that is, one provided with a protective earth terminal. The Carrier Noise Test Set and all related documentation should be reviewed for familiarization with safety markings and instructions before operation. Refer to the Safety Considerations page found at the beginning of this manual for a summary of the safety information. Safety information for installation, operation, performance testing, adjustment, or service is found in appropriate places throughout this manual.

1-4. INSTRUMENTS COVERED BY THIS MANUAL

Attached to the rear panel of the instrument is a serial number plate. The serial number is in the form: 0000A00000. The first four digits and the letter are the serial number prefix. The last five digits are the suffix. The prefix is the same for identical instruments; it changes only when a configuration change is made to the instrument. The suffix however, is assigned sequentially and is different for each instrument. The contents of this manual apply directly to instruments having the serial number prefix(es) listed under SERIAL NUMBERS on the title page.

1-5. MANUAL CHANGES SUPPLEMENT

An instrument manufactured after the printing of this manual may have a serial number prefix that is not listed on the title page. This unlisted serial number prefix indicates that the instrument is different from those documented in this manual. The manual for this newer instrument is accompanied by a Manual Changes supplement. The supplement contains "change information" that explains how to adapt this manual to the newer instrument.

In addition to change information, the supplement may contain information for correcting errors in the manual. To keep the manual as current and as accurate as possible, Hewlett-Packard recommends that you periodically request the latest Manual Changes supplement. The supplement is identified with the manual print date and part number, both of which appear on the manual title page. Complimentary copies of the supplement are available from Hewlett-Packard.

For information concerning a serial number prefix that is not listed on the title page or in the

MANUAL CHANGES SUPPLEMENT (cont'd)

Manual Changes supplement, contact your nearest Hewlett-Packard office.

1-6. DESCRIPTION

The Hewlett-Packard Model 11729B Carrier Noise Test Set is an integral part of a phase noise measurement system.

With the addition of Option 130 the Carrier Noise Test Set is capable of detecting the signal under test for making AM noise measurements.

The Carrier Noise Test Set can perform the following three operations:

- Downconverts the signal under test to 5 MHz
- -- 1280 MHz
- Phase detects the signal under test against an external reference signal or against itself, delayed
- Phase locks the signal under test to an external reference signal

The Carrier Noise Test Set can be used in two methods of making phase noise measurements:

- Phase Detector Method
- Frequency Discriminator Method

The number of drive signals required for the Carrier Noise Test Set to be completely operational depends on the phase noise measurement method used and the frequency of the signal under test. The drive signals are supplied from an external RF source.

The following table lists when the drive signals are required:

		Detector thod	Frequency Discriminator Method Frequency Range of Signal Under Test	
Orive Signals		y Range of nder Test		
	10 MHz to 1.28 GHz	1.28 GHz to 18 GHz	10 MHz to 18 GHz	
Fixed 640 MHz	Not Needed	x	X	
Tunable 5 MHz to 1280 MHz	х	х	Not Needed	

X = Drive signal is used.

When using the Phase Detector Method the signal under test is first down-converted to the 5 MHz to

1280 MHz range and then phase detected against the tunable 5 MHz to 1280 MHz signal. Phase detecting produces a dc signal with simultaneous ac voltage fluctuations. These ac components are proportional to the combined phase noise of the two input signals (the signal under test and the tunable 5 MHz to 1280 MHz signal), at rates corresponding to the offset frequency from the signal under test. The phase detected output signal is also used as an error voltage to keep the signal under test and the tunable 5 MHz to 1280 MHz signal in phase quadrature (that is, 90 degrees out-of-phase).

When using the Frequency Discriminator Method, the down-converted signal under test is phase detected against itself using an external delay line and the internal mixer/phase detector. The phase detected signal is proportional to the phase noise on the signal under test. In the Discriminator Method the signal under test does not have to be phase locked to an external reference signal.

The Carrier Noise Test Set accepts test signals from 10 MHz — 18 GHz, at a level of +7 dBm to +20 dBm. The broad frequency range is user selectable from the front panel (local) or by using the Hewlett-Packard Interface Bus (remote). When using the Carrier Noise Test Set in the Phase Detector Method the controls for acquiring and maintaining phase lock are user selectable from the front panel (local) or by using the Hewlett-Packard Interface Bus (remote).

The Carrier Noise Test Set is compatible with HP-IB to the extent indicated by the following codes: SH1, AH1, T5, TE0, L3, LE0, SR1, RL1, PP1, DC1, DT0, and C0. The Carrier Noise Test Set interfaces with the bus via three-state TTL circuitry. An explanation of the compatibility code can be found in IEEE Standard 488 (1978), "IEEE Standard Digital Interface for Programmable Instrumentation" or the identical ANSI Standard MC1,1.

1-7. OPTIONS

1-8. Electrical Options

Option 003. Option 003 has two bands installed, 10 MHz to 1.28 GHz and 1.28 GHz to 3.2 GHz.

Option 007. Option 007 has two bands installed, 10 MHz to 1.28 GHz and 3.2 GHz to 5.76 GHz.

Option 011. Option 011 has two bands installed, 10 MHz to 1.28 GHz and 5.76 GHz to 8.32 GHz.

Electrical Options (cont'd)

Option 015. Option 015 has two bands installed, 10 MHz to 1.28 GHz and 8.32 GHz to 10.88 GHz.

Option 019. Option 019 has two bands installed, 10 MHz to 1.28 GHz and 10.88 GHz to 13.44 GHz.

Option 023. Option 023 has two bands installed, 10 MHz to 1.28 GHz and 13.44 GHz to 16.00 GHz.

Option 027. Option 027 has two bands installed, 10 MHz to 1.28 GHz and 16.00 GHz to 18.00 GHz.

Option 130. Option 130 adds AM noise measurement capabilities.

Option 140. Option 140 places all front panel connectors on the rear panel.

1-9. Mechanical Options

The following options may have been ordered and received with the Carrier Noise Test Set. If they were not ordered with the original shipment and are now desired, they can be ordered from the nearest Hewlett-Packard office using the part numbers included in each of the following paragraphs.

Instrument Slide Kit (Option 160). The Carrier Noise Test Set can be easily removed from the instrument rack by using the instrument slide kit. The part number of the slide kit is HP 1494-0026.

Front Handle Kit (Option 907). Ease of handling is increased with the front panel handles. The Front Handle Kit part number is HP 5061-0088.

Rack Flange Kit (Option 908). The Carrier Noise Test Set can be solidly mounted to the instrument rack using the flange kit. The Rack Flange Kit part number is HP 5061-0074.

Rack Flange and Front Handle Combination Kit (Option 909). This is a unique part which combines both functions. It is not simply a front handle kit and a rack flange kit packaged together. The Rack Flange and Front Panel Combination Kit part number is HP 5061-0075.

1-10. ACCESSORIES SUPPLIED

The accessories supplied with the Carrier Noise Test Set are shown in Figure 1-1.

a. The line power cable is supplied in several configurations, depending on the destination of

the original shipment. Refer to Power Cables in Section II of this manual.

- b. An additional fuse is shipped only with instruments that are factory configured for 100/120 Vac operation. This fuse has a 0.5A rating and is for reconfiguring the instrument for 220/240 Vac operation.
- c. A 50 ohm termination is supplied to be connected to the IF OUTPUT on the front panel. With the 50 ohm termination in place the Carrier Noise Test Set meets the requirements of MIL STD 461 RE02.

NOTE

The 50 ohm termination must be connected to the IF OUTPUT if the IF OUTPUT is not being used.

1-11. EQUIPMENT REQUIRED BUT NOT SUPPLIED

For the Carrier Noise Test Set to be completely operational it will require one or two drive signals (either a fixed 640 MHz signal or a 5 MHz to 1280 MHz signal or both) that are supplied from an external RF source. Critical specifications of the RF source are in Table 1-4 in this section.

The following table lists the coaxial cables required to connect the Carrier Noise Test Set to the HP 8662A or 8663A Synthesized Signal Generators. Also listed are the cables necessary to connect the Carrier Noise Test Set to a spectrum analyzer.

HP Part No.	Description	Use on Carrier Noise Test Set
11170B	BNC(M)-BNC(M) (24 inches)	5 to 1280 MHz INPUT
11170C	BNC(M)-BNC(M) (48 inches)	640 MHz IN FREQ-CONT DC-FM FREQ-CONT X-OSC NOISE SPECTRUM <10 MHz OUTPUT <1 MHz OUTPUT

1-12. ELECTRICAL EQUIPMENT AVAILABLE

The Carrier Noise Test Set has an HP-IB interface and can be used with any HP-IB compatible computing controller or computer for automatic systems applications.

1-13. RECOMMENDED TEST EQUIPMENT

Table 1-4 lists the test equipment recommended for use in testing, adjusting and servicing the Carrier Noise Test Set. The Critical Specification column describes the essential requirements for each piece of test equipment. Other equipment can be substituted if it meets or exceeds these critical specifications.

Table 1-4 also includes some alternate equipment listings. These alternate instruments are highlighted in Table 1-5 which also indicates the possible advantages of using them as substitutes.

Table 1-1, Specifications (1 of 2)

Electrical Characteristics	Performance Limits	Conditions
TEST SIGNAL Frequency Range ¹	10 MHz to 18 GHz	External low-pass filtering may be required for test signals <20 MHz and ±20 MHz around band centers
Band Center Frequencies	1.92 GHz 4.48 GHz 7.04 GHz 9.60 GHz 12.16 GHz 14.72 GHz 17.28 GHz	
IF OUTPUT Bandwidth Level	5 MHz to 1280 MHz +7 dBm Minimum	
AM NOISE DETECTION (Option 130) Frequency Range Input level AM Noise Floor Offset from Carrier (Hz) 1k 10k 100k 1M	10 MHz to 18 GHz 0 dBm to +18 dBm AM Noise (dBc/Hz) -138 -145 -155 -160	At +10 dBm input level
RESIDUAL NOISE Offset From Carrier(Hz) 10 100 1k 10k 100k 1M	dBc/Hz -115 -126 -135 -142 -151 -156	With a <1.28 GHz input signal

Table 1-1. Specifications (2 of 2)

Electrical Characteristics	Performance Limits	Canditions
RESIDUAL NOISE (cont'd)		
Offset From Carrier (Hz)	dBc/Hz	With a 10 GHz input signal
10	-90	
100	-105	
1k	-115	
10k	-127	
100k	-137	
1 M	-137	
GENERAL		
Line Voltage	100,120,220 or 240V (+5%,-10%)	
Line Frequency	48 to 66 Hz	
Power Dissipation Temperature:	75 V·A maximum	
Operating	0 to +55°C	
Weight:		
Net	10.4 kg (23 lb.)	
Dimensions ² :		
Height	99 mm (3.9 in.)	
Width	425 mm (16.8 in.)	
Depth	551 mm (21.7 in.)	
Remote Operation (HP-IB) ³		
IEEE STD 488-1978 Compatibility Code: SH1, AH1, T5,TE0,		
L3, LE0, SR1, RL1, PP1, DC1, DT0, C0.		
ELECTROMAGNETIC COMPATIBILITY		
Electromagnetic	Conducted and radiated inter-	
Interference	ference is within the require- ments of CE03 and RE02 as called out in MIL-STD 461, and	
	within the requirements of VDE 0871 and CISPR Publication 11.	

 $^{^2}$ For ordering cabinet accessories the module sizes are 3-1/2H, 1MW (module width), 20D.

³The Hewlett-Packard Interface Bus (HP-IB) is Hewlett-Packard's implementation of IEEE STD 488-1978, "Digital Interface for Programmable Instrumentation." All front panel functions with the exception of the line switch are HP-IB programmable.

Table 1-2. Supplemental Characteristics (1 of 2)

Supplemental characteristics are intended to provide information useful in applying the instrument by giving typical, but non-warranted, performance parameters.

TEST SIGNAL

Level: For test signals >1.28 GHz: +7 dBm to +20 dBm Typically useable down to -15 dBm with potential noise floor degradation.

For test frequencies <1.28 GHz: -5 dBm to +10 dBm. Typically usable down to -15 dBm with potential noise floor degradation; optimal level from -2 dBm to +3 dBm.

IF OUTPUT

Typically useable to 1500 MHz dependent on the test frequency.

NOISE SPECTRUM OUTPUTS

<10 MHz Output (The < 10 MHz Output is amplified by an internal 40 dB Low Noise Amplifier)

Bandwidth: 10 Hz to 10 MHz. (3 dB BW: 10 Hz to 15 MHz typical.)

Flatness: ±1 dB typical, 50 Hz to 10 MHz

Output impedance: 500 nominal

<1 MHz Output (The < 1 MHz Output is a non-amplified output)

Bandwidth: dc to 1 MHz. (3 dB BW: dc to 1.5 MHz typical.)

Flatness: $\pm~1~dB$ typical Output impedance: 600Ω nominal

Auxiliary Noise

Output impedance: 600Ω nominal Bandwidth: de to 1 MHz typical

PHASE LOCK LOOP FUNCTION

FREQUENCY CONTROL OUTPUTS

Freq-Cont X-Osc

Output level: $\pm 10 \text{V}$ nominal Nominal Output impedance: 100Ω .

Freq-Cont DC-FM

Output level: $\pm 1V$ nominal Nominal Output impedance: 50Ω .

Lock Bandwidth Factor: 1, 10, 100, 1k, 10k nominal. (Selectable by front panel pushbuttons.)

Loop characteristics: dependent on method of phase lock (crystal or DC-FM) used and loop VCO chosen.

Loop Characteristics when using the HP 8662A Elec-

tronic Frequency Control input for phase locking with the HP 8662A front panel output at 0 dBm:

Loop Holding Range (LHR):

$$\frac{\pm f_{\text{dut}}}{10^7}$$
 (Hz nominal)

Loop Bandwidth (LBW):

$$\frac{\text{HP 11729B LBF x f}_{\text{dut}}}{10^{10}} = (\text{Hz nominal})$$

Loop Bandwidth Maxlmum: 2 kHz typical

f = frequency

dut = Device under test

LBF = Lock Bandwith Factor set on 11729B

Loop Characteristics when using the HP 8662A dc FM modulation input for phase locking with the HP 8662A front panel output at 0 dBm:

Loop Holding Range (LHR): \pm FM deviation set on HP 8662A (Hz nominal).

Loop Bandwidth (LBW):

$$\frac{\text{(HP 8662A FPD)} \times \text{HP 11729B LBF nom.}}{10^3} = \frac{\text{(Hz)}}{\text{nom.}}$$

Loop Bandwidth Maximum: 100 kHz typical.

LBF = Lock Bandwidth Factor set on 11729B FPD = Front Panel Deviation

LOOP TEST PORTS

Loop Test Input:

Source: random noise source, tracking generator, or sinusoidal input.

Bandwidth: dc to 100 kHz typical.

Input level: less than 0.1V peak, typical.

Input impedance: dc coupled, 10 kΩ nominal

Loop Test Output:

Bandwidth: dc to 100 kHz, typical.

Output level: gain outside loop bandwidth = 1

Output impedance: dc coupled, $1 \text{ k}\Omega$. nominal

AM NOISE DETECTION

(Option 130)

AM Noise Floor (at +10 dBm input level):

Offset From Carrier (Hz) Typical (AM	Noise(dBc/Hz)
------------------------------------	----	---------------

1 k	-147
10k	152
100k	-161
1 M	-165

PHASE LOCK LOOP FUNCTION (cont'd)

Table 1-2. Supplemental Characteristics (2 of 2)

RESIDUAL NOISE							
Offset		Carrier					
from carrier (Hz)	<1.28GHz (dBc/Hz)	5 GHz (dBc/Hz)	10 GHz (dBc/Hz)	18 GHz (dBc/Hz)			
10	-125	-108	-106	-97			
100	-133	-120	-116	-109			
1k	-140	-130	-125	-119			
10k	-147	-137	-132	-126			
100k	-156	-146	-141	-135			
1 M	-160	-148	-142	-137			

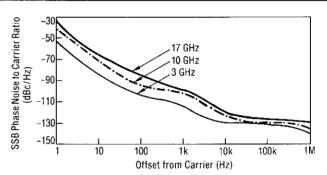
The following information is supplied to aid the user when configuring the Carrier Noise Test Set in a system. The system specifications are for the HP 11729B and the HP 8662A.

Also given are the general requirements for an unknown RF source being used with the HP 11729B.

Table 1-3. System Specifications (1 of 2)

ABSOLUTE SYSTEM NOISE FLOOR

System noise is specified only when the HP 11729B is used with an HP 8662A Option 003¹.


Phase Detector Method (locking via EFC):

HP 11729B/8662A Absolute System Noise^{2,3} (dBc/Hz):

Offset from	Band 1 5 to 1280 MHz		Band 2 1.28 to 3.2 GHz		Band 3 3.2 to 5.76 GHz		Band 4 5.76 to 8.32 GHz	
Carrier (Hz)	Тур.	Spec.	Тур.	Spec.	Тур.	Spec.	Typ.	Spec.
1	-58	-48	-53	-43	-47	-37	-43	-33
10	-88	-78	-83	-73	-77	-67	-73	-63
100	108	-98	-103	-93	-97	-87	-93	-83
1k	-119	-115	-115	-110	-109	-104	-105	-100
10k	-130	-125	-129	-124	-127	-123	-125	-121
100k	-130	-126	-130	-126	-130	-126	-129	-125
1M	-140		-140		-138		-135	
	Band 5 8.32 to 10.88 GHz		8and 6 10.88 to 13.44 GHz			nd 7		nd 8
Offset from Corstor						to 16.0 Hz	16.0 t Gl	o 18.0 Hz
from Carrier	Typ.	Hz Spec.	G Typ.	Hz Spec.	С Тур.	Hz Spec.	Gi Typ.	Hz Spec.
from Carrier (Hz)	G	Hz	G	Hz	G	Spec. -27	GI Typ. -35	Spec. -25
from Carrier (Hz)	Typ40	Spec. -30	С Тур. -38	Spec. -28	Тур. -37	Hz Spec.	Gi Typ.	Hz Spec.
from Carrier (Hz) 1 10	Typ40 -70	Spec. -30 -60	Typ38 -68	Spec28 -58	Typ37 -67	Spec27 -57	Typ. -35 -65	Spec. -25 -55
from Carrier (Hz) 1 10 100	Typ. -40 -70 -90	Spec. -30 -60 -80	Тур. -38 -68 -88	Spec28 -58 -78	Typ. -37 -67 -87	Spec. -27 -57 -77	Typ. -35 -65 -85	Spec. -25 -55 -75
from Carrier (Hz) 1 10 100 1k	-40 -70 -90 -102	Spec. -30 -60 -80 -97	Typ. -38 -68 -88 -100	Spec. -28 -58 -78 -95	Typ. -37 -67 -87 -99	Spec27 -57 -77 -94	Typ. -35 -65 -85 -97	Spec25 -55 -75 -92

¹The HP 8663A Option 003 (operated below 1280 MHz) may be used in place of the HP 8662A with no change in system performance.

²These system noise floor specifications apply for locking via the EFC of the HP 8662A crystal oscillator. Locking via the HP 8662A dc FM changes the phase noise on the tuna-

Typical HP 11729B/8662A system noise (phase detector method, locking via EFC).

ble HP 8662A signal and therefore total system noise. Use the system phase noise equation at the end of footnote 3 to determine system phase noise when locking via the HP 8662A dc FM.

³The absolute system phase noise is dependent on the test signal frequency, therefore, the actual system noise may be lower than specified. Since the noise contribution of the HP 8662A front panel signal is a function of frequency selected, the overall system noise may improve for test frequencies <640 MHz from band centers. For example, for frequencies over the narrow range of 8.96 to 10.24 GHz, typical system phase noise at a 100 kHz offset is -134 dBc/Hz. To determine the system phase noise for any test frequency, see the system phase noise equation below.

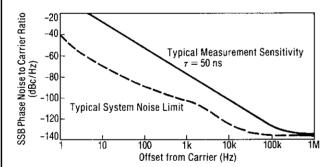
$$\mathcal{L}_{\text{system}} = 10 \log \frac{\mathcal{L}_1}{(N^2 \times 10^{10} + \frac{\mathcal{L}_2}{10^{10} + \frac{\mathcal{L}_3}{10^{10}})}$$

where N = center frequency of selected filter/640 MHz \mathcal{L}_1 = absolute SSB phase noise of the 640 MHz ref-

 \mathcal{L}_2 = absolute SSB phase noise of the 5 to 1280 MHz tunable signal (dBc/Hz)

erence signal (dBc/Hz)

 \mathcal{L}_3 = residual noise of the HP 11729B (dBc/Hz)


Table 1-3. System Specifications (2 of 2)

Frequency Discriminator Method:

HP 11729B/8662A System Noise and Sensitivity: In the frequency discriminator mode, the lower limit of the measurement system sensitivity is set by the noise contribution of the 11729B/8662A. Typical system noise contribution of the HP 11729B/8662A is shown in the table below.

Offset	Typical System Noise (dBc/Hz) (frequency discriminator)				
from Carrier (Hz)	1.26 to 3.2 GHz	8.32 to 10.88 GHz	16.0 to 18.0 GHz		
1	-54	-40	-35		
10	84	-70	-65		
100	-104	-90	-85		
1k	-116	-102	-97		
10k	-139	-125	-120		
100k	-149	-135	-130		
1Mf	-149	-135	-130		

The actual HP 11729B/8662A measurement sensitivity in the frequency discriminator method largely depends on the delay line (delay time) used. The longer the delay time, the closer the measurement sensitivity approaches the system noise limit. The graph shows the HP 11729B/8662A noise contribution, and a typically obtainable system sensitivity. A 34 foot section of flexible RF cable (RG 225) was used as the external time delay element $\tau=50$ ns.

Typical noise contribution of HP 11729B/8662A (frequency discriminator method) at X-band and typical system sensitivity using a 50 ns delay line discriminator.

Listed below are general requirements for the RF source when used with the HP 11729B in a system:

640 MHz signal source:

Frequency: 640 MHz ±50 ppm.

Level: +1 dBm minimum, +4 dBm maximum.

Frequency control: dependent on method of phase lock chosen.

5 to 1280 MHz tunable source:

Frequency: 5 to 1280 MHz.

Level: $0 \text{ dBm} \pm 1 \text{ dB}$. Typically usable to -10 dBm with change in loop bandwidth and system noise floor.

Frequency control: dependent on method of phase lock chosen; could require dc coupled frequency controlled input accepting $\pm 1V$ or $\pm 10V$, with necessary deviation dependent on source under test.

Use the following procedure to calculate the Absolute System Noise Floor of the HP 11729B and an RF source other than the HP 8662A.

Absolute System Noise Floor (general case):

Measurement system noise floor is dependent on the RF reference source(s) used. For the frequency discriminator method, system noise is a composite of the noise on the multiplied 640 MHz signal plus the residual noise of the HP 11729B. For the phase detector method, system noise has the additional noise of the RF tunable source at the phase detector input. System noise can be described by

$$\mathcal{L}_{\text{system}} = 10 \log \left(N^2 \times \frac{\mathcal{L}_1}{10^{10}} + \frac{\mathcal{L}_2}{10^{10}} + \frac{\mathcal{L}_3}{10^{10}} \right)$$

where N = center frequency of selected filter/640 MHz

 \mathcal{L}_1 = absolute SSB phase noise of the 640 MHz reference signal (dBc/Hz)

 \mathcal{L}_2 = absolute SSB phase noise of the 5 to 1280 MHz tunable signal (dBc/Hz)

 \mathcal{L}_3 = residual noise of the HP 11729B (dBc/Hz)

Table 1-4. Recommended Test Equipment (1 of 3)

Instrument	Critical Specifications	Recommended Model	Use*
Amplifier	Input Frequency: 640 MHz Gain: 22 dB Noise Figure: < 10 dBm	HP 8447E/F	P
Attenuator	Input Frequency Range: 640 MHz to 1 GHz Incremental Attenuation: 1 dB steps Maximum attenuation: 10 dB	HP 355C	P
Cable (RF)	BNC(m) to BNC(m) (9 inches)	HP 10502A	P
Cable (RF)	BNC(m) to BNC(m) (24 inches)	HP 11170B	OPAT
Carrier Noise Test Set	(There isn't any substitute instrument for the Carrier Noise Test Set)	HP 11729B ¹	P
	Band Range: 8.32 GHz to 10.88 GHz		İ
	IF output bandwidth: 400 MHz		
	IF output level: +7 dBm		
	Residual Phase Noise: (Using a 10 GHz Test Signal)		
	Offset From Carrier (Hz) Level (dBc/Hz) 10 - 90 100 -105 1k -115 10k -127 100k -137 1M -137		
Controller	Minimum controller capability as defined by IEEE Standard 488-1975 and the identical ANSI Standard MC1.1: SH1, AH1, T4, TE0, L2, LE0, SR0, RL1, PP0, DC0, DT0, and C1-4,26.	HP 85B	OA
Digital Multimeter	Input Range: 0 to 15 Vdc Accuracy: ±1 mVdc	HP 3468A	AT
Function Generator	Frequency: 1 kHz Function: sinewave Amplitude: 500 mVdc to 5 Vdc DC Offset Capability	HP 3312A	P
Isolator	Power Input level: +15 dBm Frequency Input: 10 GHz	HP 0955-0178 ²	P

A = Adjustments; O = Operator's Checks; P = Performance Tests; T = Troubleshooting

¹This Carrier Noise Test Set must contain a Band Range that is included in the Carrier Noise Test Set under test.

 $^{^2}$ Under certain conditions an attenuator can be used in place of the isolator. For more information see the AM Noise Floor Performance Test in Section IV.

Table 1-4. Recommended Test Equipment (2 of 3)

Instrument	Critical Specifications	Recommended Model	Use*	
Low Frequency Spectrum Analyzer	Frequency Range: 0 Hz to 1 kHz Measurement Range: -75 dBm to 0 dBm Resolution Bandwidth: 30 MHz Video Averaging Video Readout Accuracy: ±0.5 dB	HP 3582A HP 3561A	P	
Low Noise Oscillator	One Frequency between: 5 MHz and 18 GHz Amplitude: +10 dBm AM noise:	MA 86651A ³ (M/A Com)	P	
	Offset From Level Carrier (Hz) (dBc/Hz)			
	100k <-155 1M <-160			
Microwave Synthesized Source	Frequency Range: 2 GHz to 10 GHz Amplitude: >+10 dBm Short term Frequency stability: 1 part in 10 ⁷ External AM Modulation capability	HP 8340A HP 8673B	OPAT	
Oscilloscope	Bandwidth: 100 Hz Vertical Sensitivity: 5 mV/div AC Coupled	HP 1740A	Т	
Power Meter	Accuracy: ±0.2 dBm	HP 436A	PA	
Power Sensor	Frequency Range: 100 MHz to 10 GHz Power Range: 0 dBm to 15 dBm Input Impedance: 50Ω SWR: < 1.25	HP 8481A	PA	
Power Splitter	Input Frequency Range: 400 MHz to 700 MHz Output tracking: <0.25 dB	HP 11667A	P	
Power Splitter	Input Frequency: 10 GHz Output tracking: <0.25 dB	HP 11667A	Р	
Power Supply	Voltage Output: +10 Vdc maximum	HP 6214B	P	
RF Spectrum Analyzer	Frequency Range: 1 kHz to 10 MHz Dynamic Range: -75 dBm to 0 dBm Resolution Bandwidth: 100 Hz and 100 kHz Video Filtering Marker capability Reference Level Control Video Readout Accuracy: ± 0.5 dB Sensitivity: -117 dB	HP 8566A	OPT	

^{*}A = Adjustments; O = Operator's Checks; P = Performance Tests; T = Troubleshooting 3 Commercial Sources Division, M/A-COM, South Avenue, Burlington, MA 01803

Table 1-4. Recommended Test Equipment (3 of 3)

Instrument	Critical S	Recommended Model	Use*	
RF Synthesized Signal	Auxillary 640 MHz Sign	al:	HP 8662A ⁴ (Opt. 003)	OPAT
Generator	Absolute Phase Noise:		HP 8663A4	
	Offset From Carrier (Hz)	Level (dBc/Hz)	(Opt. 003)	
	1	- 54		
	10	- 84		
	100	-104		
	1 k	-121		
	10 k	-145		
	100 k	-157		
	1 M	-157		
	Level: >+1 dBm to <+4	dBm		
	Electronic Frequency Co	ntrol: ± 1 Vdc or ± 10 Vdc		
	RF Output: Frequency Range: 300	MHz to 700 MHz		
	Frequency resolution:	10 Hz		
	Amplitude: -40 dBm t	o 0 dBm		
	External AM Modulati	on capability		
Termination	50 ohms BNC		HP 11593A	P
Waveguide	UG-135/U to N(f)		HP X281C	P

^{*} A = Adjustments; O = Operator's Checks; P = Performance Tests; T = Troubleshooting

Table 1-5. Recommended Alternate Test Equipment

Instrument Type	Suggested Alternate	Instrument Replaced	Advantages of Alternate
RF Synthesized Signal Generator	HP 8663A	HP 8662A	The HP 8663A is a direct substitute for the HP 8662A.
Microwave Synthesized Source	HP 8673B	HP 8340A	Less expensive
Low Frequency Spectrum Analyzer	HP 3561A	HP 3582A	Better Accuracy

⁴For one HP 8662A or 8663A to operate with the Carrier Noise Test Set and give the best phase noise performance, two rear panel connectors are required. One connector must supply 640 MHz and the other connector must accept the Electronic Frequency Control signal from the Carrier Noise Test Set. As of April 1984 these two connectors are on the rear panel of each standard HP 8662A or 8663A. Before April 1984 these two connectors were specified by options H03 and H12. The HP 8662A or 8663A option 003 includes testing the phase noise of the 640 MHz signal.

SECTION II

2-1. INTRODUCTION

This section provides the information needed to install the Carrier Noise Test Set. Included is information pertinent to initial inspection, power requirements, line voltage selection, power cables, interconnection, environment, instrument mounting, storage and shipment.

2-2. INITIAL INSPECTION

WARNING

To avoid hazardous electrical shock, do not perform electrical tests when there are signs of shipping damage to any portion of the outer enclosure (covers, panels, displays).

Inspect the shipping container for damage. If the shipping container or cushioning material is damaged, it should be kept until the contents of the shipment have been checked for completeness and the instrument has been checked mechanically and electrically. The contents of the shipment should be as shown in Figure 1-1. Procedures for checking electrical performance are given in Section IV. If the contents are incomplete, if there is mechanical damage or defect, or if the instrument does not pass the electrical performance test, notify the nearest Hewlett-Packard office. If the shipping container is damaged or the cushioning material shows signs of stress, notify the carrier as well as the Hewlett-Packard office. Keep the shipping materials for the carrier's inspection.

2-3. PREPARATION FOR USE

2-4. Power Requirements

The Carrier Noise Test Set requires a power source of 100, 120, 220 or 240 Vac, +5% to -10%, 48 to 66 Hz single phase. Power consumption is 75 VA maximum.

WARNINGS

This is a Safety Class I product (that is, provided with a protective earth terminal). An uninterruptible safety earth ground must be provided from the main

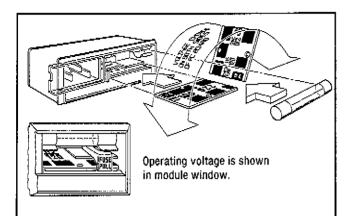
power source to the product input wiring terminals through the power cord or supplied power cord set. Whenever it is likely that the protection has been impaired, the product must be made inoperative and be secured against any unintended operation.

If this instrument is to be energized via an external autotransformer, make sure the autotransformer's common terminal is connected to the neutral (that is, the grounded side of the mains supply).

2-5. Line Voltage and Fuse Selection

CAUTION

BEFORE PLUGGING THIS INSTRU-MENT into the mains (line) voltage, be sure the correct voltage and fuse have been selected.


Verify that the line voltage selection card and the fuse are matched to the power source. Refer to Figure 2-1, Line Voltage and Fuse Selection.

Fuses may be ordered under HP part numbers 2110-0001, 1.0A (250V) for 100/ 120 Vac operation and 2110-0012, 0.5A (250V) for 220/240 Vac operation.

2-6. Power Cables

WARNING

BEFORE CONNECTING THIS IN-STRUMENT, the protective earth terminal of this instrument must be connected to the protective conductor of the (mains) power cord. The mains plug shall only be inserted in a socket outlet provided with a protective earth contact. The protective action must not be negated by the use of an extension cord (power cable) without a protective conductor (grounding).

SELECTION OF OPERATING VOLTAGE

- Open cover door, pull the FUSE PULL lever and rotate to left. Remove the fuse.
- Remove the Line Voltage Selection Card. Position the card so the line voltage appears at top-left corner. Push the card firmly into the slot.
- Rotate the FUSE PULL lever to its normal position. Insert a fuse of the correct value in the holder. Close the cover door.

WARNING

To avoid the possibility of hazardous electrical shock, do not operate this instrument at line voltages greater than 126.5 Vac with line frequencies greater than 66 Hz [leakage currents at these line settings may exceed 3.5 mA].

Power Cables (cont'd)

This instrument is equipped with a three-wire power cable. When connected to an appropriate ac power receptacle, this cable grounds the instrument cabinet. The power cable plug shipped with each instrument depends on the country of destination. Refer to Figure 2-2 for the part numbers of power cables available.

2-7. HP-IB Address Selection

The HP-IB address is switch-selectable through five miniature slide switches located on the rear panel of the Carrier Noise Test Set. These switches provide the means to select one of 31 valid HP-IB addresses (00 through 30). HP-IB addresses greater than 30 (decimal) are invalid. Refer to Table 2-1 for the allowable HP-IB address codes. Listed are the valid address switch settings and equivalent ASCII character and decimal value. When the instrument is shipped from the factory, the HP-IB address is preset to 06 (decimal). (In binary, this is 00110.) This preset address is shown shaded in Table 2-1.

The following procedure describes how to change the settings of the HP-IB address switches.

Use a small screwdriver to set the switches to the desired HP-IB address in binary. The five switches are labeled A1 through A5, where A1 is the least significant address bit and A5 is the most signifi-

Tigure 2-1. Line Voltage and Fuse Selection

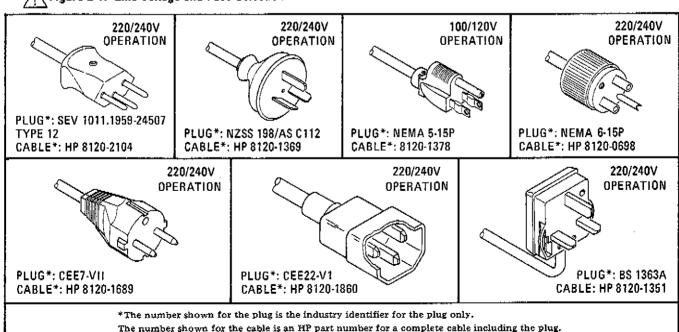


Figure 2-2. Power Cable and Mains Plug Part Numbers

Table 2-1. Allowable HP-IB Address Codes

Decimal Equiva- lent!	Listen Address Char-	Talk Address Char-	Address Switches ¹				
	acter	acter	A5	A4	A3	A2	A1
0	SP	@	0	0	0	0	0
1	!	Α	0	0	0	0	1
2	14	В	0	0	0	1	0
3	#	С	0	0	0	1	1
4	\$	D	0	0	1	0	0
5	%	E	0	0	1	0	1
. 6	8	YEF .	0.	. 0	∜adz:	(d.)	0 -
7		G	0	0	1	1	1
8	(Н	0	1	0	0	0
9)	l l	0	1	0	0	1
10	*	J	0	1	0	1	0
11	+	К	0	1	0	1	1
12	,	L	0	1	1	0	0
13	-	М .	0	1	1	0	1
14	•	N	0	1	1	1	0
15	1	0	0	1	1	1	1
16	0	Р	1	0	0	0	0
17	1	Q	1	0	0	0	1
18	2	R	1	0	0	1	0
19	3	S	1	0	0	1	1
20	4	Ţ	1	0	1	0	0
21	5	U	1	0	1	0	1
22	6	ν	1	0	1	1	0
23	7	W	1	0	1	1	1
24	8_	Х	1	1	0	0	0
25	9	Y	1	1	0	0	1
26	:	Z	1	1	0	1	0
27	;	[1	1	0	1	1
28	< "	\	1	1	1	0	0
29	=	<u> </u>	1	1	1	0_	1
30	>	_ ^	1	1	1	1	0

¹Decimal characters and the five address switches relate to the last five bits of both talk and listen addresses.

HP-IB Address Selection (cont'd)

cant address bit. Sliding the switch downward (as viewed from the rear of the instrument) "sets" the corresponding address bit to "1" while sliding the switch upwards "clears" the bit (bit=0). Setting all of the address bits to "1" will result in an invalid HP-IB address (31 decimal). In this case an HP-IB

address of 30 (decimal) will be stored in memory once the instrument is powered up.

If the HP-IB address is changed when the instrument is on the instrument will have to be turned off then turned on again. This is necessary so the new address can be read by the microprocessor and stored in memory.

Along with the five address switches (A1 through A5) there are two other switches. These two switches are labeled "LO" LISTEN ONLY and "TO" TALK ONLY. When either the "LO" or "TO" switch is set to "1" the Carrier Noise Test Set becomes either a TALKER ONLY or a LISTENER ONLY and the HP-IB address is overridden. At the factory the "LO" and "TO" switches are set to "0".

2-8. Interconnections

For the HP11729B Carrier Noise Test Set to be fully operational it has to be connected, by coaxial cable, to an RF source. The RF source supplies two drive signals essential to the operation of the Carrier Noise Test Set.

The following figures, in Section III OPERA-TION, show the interconnections to the Carrier Noise Test Set:

Figure 3-5 Phase Noise Measurement Setup (Phase Detector Method)

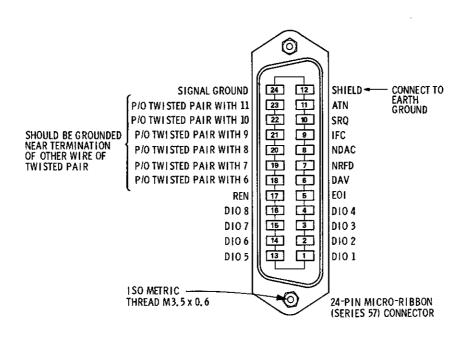
Figure 3-8 Phase Noise Measurement Setup (Discriminator Method)

Figure 3-9 AM Noise Measurement Setup

Interconnection data for the Hewlett-Packard Interface Bus is provided in Figure 2-3.

2-9. Mating Connectors

HP-IB Interface Connector. The HP-IB mating connector is shown in Figure 2-3. Note that the two securing screws are metric.


Coaxial Connectors. Coaxial mating connectors used with the Carrier Noise Test Set should be 50 ohm Type N and 50 ohm BNC male connectors.

2-10. Operating Environment

The operating environment should be within the following limitations:

Temperature	0 to +55°C
Humidity	.5% to 95% relative at 40°C
Altitude	. <4600 metres (15 000 feet)

²Factory-set address.

Logic Levels

The Hewlett-Packard Interface Bus Logic Levels are TTL compatible, i.e., the true (1) state is 0.0 Vdc to +0.4 Vdc and the false (0) state is +2.5 Vdc to +5.0 Vdc.

Programming and Output Data Format

Refer to Section III, Operation.

Mating Connector

HP 1251-0293; Amphenol 57-30240.

Mating Cables Available

HP 10833A, 1 metre (3.3 ft), HP 10833B, 2 metres (6.6 ft) HP 10833C 4 metres (13.2 ft), HP 10833D, 0.5 metres (1.6 ft)

Cabling Restrictions

- 1. A Hewlett-Packard Interface Bus system may contain no more than 2 metres (6.6 ft) of connecting cable per instrument.
- 2. The maximum accumulative length of connecting cable for any Hewlett-Packard Interface Bus system is 20.0 metres (65.6 ft).

2-11. Bench Operation

The instrument cabinet has plastic feet and foldaway tilt stands for convenience in bench operation. (The plastic feet are shaped to ensure selfalignment of instruments when they are stacked.) The tilt stands raise the front of the Carrier Noise Test Set for easier viewing of the front panel.

2-12. Rack Mounting

WARNING

The Carrier Noise Test Set weighs 10.4 kg (23 lb.), therefore care must be exercised when lifting to avoid personal injury. Use equipment slides when rack mounting.

Rack mounting information is provided with the rack mounting kits. If the kits were not ordered with the instrument as options, they may be ordered through the nearest Hewlett-Packard office. Refer to the paragraph entitled Mechanical Options in Section I.

2-13. STORAGE AND SHIPMENT

2-14. Environment

2-15. Packaging

Tagging for Service. If the instrument is being returned to Hewlett-Packard for service, please complete one of the blue repair tags located at the back of this manual and attach it to the instrument.

Original Packaging. Containers and materials identical to those used in factory packaging are available through Hewlett-Packard offices. Mark the container "FRAGILE" to assure careful handling. In any correspondence refer to the instrument by model number and full serial number.

Other Packaging. The following general instructions should be used for re-packaging with commercially available materials:

- a. Wrap the instrument in heavy paper or plastic. (If shipping to a Hewlett-Packard office or service center, complete one of the blue tags mentioned above and attach it to the instrument.)
- b. Use a strong shipping container. A double-wall carton made of 2.4 MPa (350 psi) test material is adequate.
- c. Use enough shock-absorbing material (75 to 100 mm layer; 3 to 4 inches) around all sides of the instrument to provide firm cushion and prevent movement in the container. Protect the front panel with an appropriate type of cushioning material to prevent damage during shipment.
 - d. Seal the shipping container securely.
- e. Mark the shipping container "FRAGILE" to assure careful handling.

SECTION III OPERATION

3-1. INTRODUCTION

This section provides complete operating information for the Carrier Noise Test Set. Included are general operation instructions; detailed descriptions of each front and rear panel key, connector, switch and annunciator; information on remote operation; operator's checks; and operator's maintenance procedures.

3-2. Local Operation

Information covering local operation of the Carrier Noise Test Set is given in two places, namely detailed panel features and general operating instructions.

Detailed Panel Features. Figure 3-1 and Figure 3-2 illustrate the front and rear panels of the Carrier Noise Test Set and provide descriptions of each key, connector, switch and annunciator.

General Operating Instructions. Under general operating instructions the following topics are covered:

- Power-on sequences
- Power-on procedure
- Phase noise measurement using the Phase Detector Method
- Phase noise measurement using the Frequency Discriminator Method
- AM noise measurement

3-3. Remote Operation (HP-IB)

The Carrier Noise Test Set is capable of remote operation via the Hewlett-Packard Interface Bus. Knowledge of local operation is essential for HP-IB programming since most of the data messages contain the same keystroke-like sequences. HP-IB

information is presented in the following areas of this section:

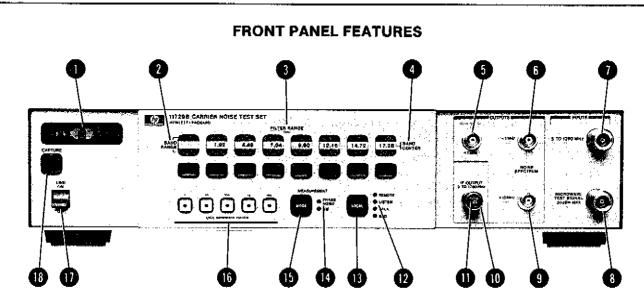
- A summary of HP-IB capabilities is provided in Table 3-3.
- A summary of program codes is provided in Table 3-4.

3-4. Operator's Checks

Operator's checks are simple procedures designed to verify that the main functions of the Carrier Noise Test Set operate properly.

These procedures require a microwave synthesized source, an RF synthesized signal generator, a spectrum analyzer, a controller (for HP-IB checks) and interconnecting cables.

3-5. Operator's Maintenance


WARNING

For continued protection against fire hazard, replace the line fuse with a 250V fuse of the same rating only. Do not use repaired fuses or short-circuited fuseholders.

The only maintenance that the operator should normally perform is the replacement of the primary power fuse. All other maintenance should be referred to qualified service personnel.

The primary power fuse is located within the Line Power Module. Refer to Figure 2-1 for instructions on how to change the fuse.

If the instrument does not operate properly and is being returned to Hewlett-Packard for service, please complete one of the blue tags located at the end of this manual and attach it to the instrument. Refer to Section II for packaging instructions.

- 1. PHASE LOCK INDICATOR. The primary purpose of the PHASE LOCK INDICATOR is to show when the device under test and the tunable 5 to 1280 MHz source are in phase quadrature (that is, 90 degrees out of phase). When the device under test and the tunable 5 to 1280 MHz source are in phase quadrature a green LED will be illuminated in the center of the PHASE LOCK INDICATOR. When the two sources are greater than 100 kHz apart a red LED will be illuminated to the left or right of the green LED. As the frequency difference decreases all the LEDs will light up dimly. Finally, as the two sources approach quadrature the LEDs will fully light one at a time, from left to right. When the center green LED is illuminated the two sources are in phase quadrature.
- 2. BAND RANGE. BAND RANGE describes the range of microwave test signals that can be input for each of the buttons below FILTER RANGE. The BAND RANGE chosen must contain the microwave test signal. The BAND RANGE desired is enabled by pressing the button below that BAND RANGE.
- 3. FILTER RANGE. FILTER RANGE describes the range of microwave test signals that can be accepted by the Carrier Noise Test Set (0.010—18 GHz).
- 4. BAND CENTER. The broad range of microwave test signals is possible because of a 640 MHz comb generator in the Carrier Noise Test Set. Through a series of filters certain harmonics from the comb generator are passed. The

- BAND CENTER frequency of the BAND RANGE chosen is the only harmonic (combline) from the comb generator that is passed. The filter used for selecting the harmonic is a 200 MHz passband filter centered around the combline.
- 5. AUX NOISE. This is a female BNC connector with an output impedance of 600Ω. The signal output is a dc level that is proportional to the phase difference between the microwave test signal and the tunable 5 to 1280 MHz signal. The dc level has ac fluctuations directly proportional to the phase noise of the microwave test signal, if the phase noise of the 640 MHz signal and the tunable 5 to 1280 MHz signal is less than the microwave test signal. The output and an oscilloscope can be used as an external quadrature monitor, because of the direct proportionality of the dc level to the phase difference of the microwave test signal and the tunable 5 to 1280 MHz signal.
- 6. NOISE SPECTRUM < 1 MHz OUTPUT. This is a female BNC connector with an output impedance of 600Ω. This output is useful for measuring the phase noise of the device under test at offsets from the carrier of dc to 1 MHz.</p>

The signal output is a dc level directly proportional to the phase difference between the microwave test signal and the tunable 5 to 1280 MHz signal. The dc level has ac fluctuations that are directly proportional to the phase noise of the the microwave test signal, if the phase noise of the 640 MHz signal and 5 to 1280 MHz signal is less than the microwave test signal.

FRONT PANEL FEATURES

NOTE

The bandwidth (dc to I MHz) is not completely flat. The 3 db points are at dc and 1.5 MHz.

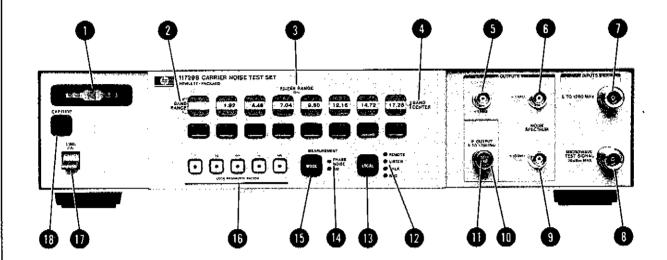
- 7. 5 to 1280 MHz INPUT. This is a female type-N connector with a 50⁸ input impedance. The frequency of the input signal is 5 to 1280 MHz from a tunable source. The frequency of the signal input is set to equal the microwave test signal minus the BAND CENTER frequency of the BAND RANGE chosen. The input level should be 0 dBm ±1 dBm. The user sets this signal in phase quadrature (that is, 90 degrees out of phase) with the microwave test signal. The IF OUTPUT is connected to this input, through a delay line, for the Frequency Discriminator Method of making a phase noise measurement.
- 8. MICROWAVE TEST SIGNAL INPUT. This is a female type-N connector with a 50Ω input impedance. This connector is used to connect the microwave test signal to the Carrier Noise Test Set. The input frequency range is 10 MHz to 18 GHz. The input level should be as follows:

For test frequencies >1.28 GHz: +7 dBm to +20 dBm (Typically usable down to -15 dBm with potential noise floor degradation). The optimal level is +7 dBm to +20 dBm.

For test frequencies <1.28 GHz: -5 dBm to +10 dBm (Typically usable down to -15 dBm with potential noise floor degradation. The optimal level is from -2 dBm to +3 dBm.)

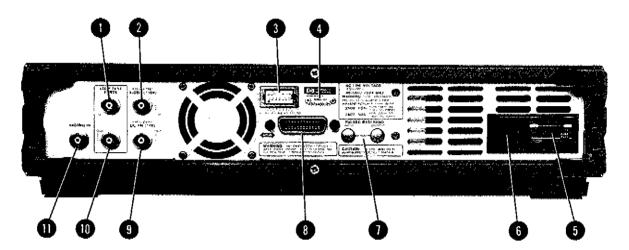
9. NOISE SPECTRUM < 10 MHz OUTPUT. This is a female BNC connector with an output impedance of 50Ω and 40 dB of gain over the < 1 MHz OUTPUT. This output is useful for measuring the phase noise or amplitude (AM) noise of the device under test at offsets from the carrier of 10 Hz to 10 MHz.</p>

The signal output is a dc level that is directly proportional to the phase difference between the microwave test signal and the tunable 5 to 1280 MHz signal. The dc level has ac fluctuations


that are directly proportional to the phase noise of the microwave test signal, if the phase noise of the 640 MHz signal and the tunable 5 to 1280 MHz signal is less than the microwave test signal.

NOTE

The bandwidth (10 Hz to 10 MHz) is not completely flat. The 3 dB points are at 10 Hz and 15 MHz.

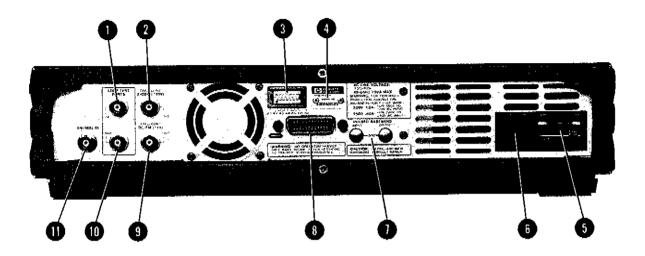

- 10. IF OUTPUT 5 to 1280 MHz. This is a female BNC connector with an output impedance of 50Ω. The output frequency will be 5 to 1280 MHz. The exact frequency is the intermediate difference frequency (IF) from the mixing of the microwave test signal and the BAND CENTER frequency of the BAND RANGE chosen. The output level is +7 dBm minimum.
- 11. 50 OHM TERMINATION. With the 50Ω termination connected to the IF OUTPUT the Carrier Noise Test Set meets the requirements of MILSTD 461 RE02. The IF OUTPUT is fully useable, just replace the 50 Ohm termination when the IF OUTPUT is not being used.
- 12. HP-IB ANNUNCIATORS. Display the HP-IB status. The REMOTE annunciator lights when the Carrier Noise Test Set is in the remote mode. The TALK annunciator lights when the Carrier Noise Test Set is addressed to talk. The LISTEN annunciator lights when the Carrier Noise Test Set is addressed to listen. The SRQ annunciator lights when the Carrier Noise Test Set is sending a Require Service message to the controller.
- 13. LOCAL. Returns the Carrier Noise Test Set to local operation (front panel control) from remote HP-IB control provided that the instrument is not in Local Lockout.
- 14. MEASUREMENT ANNUNCIATORS. When a phase noise measurement is selected the PHASE NOISE annunciator will be illuminated. When an AM noise measurement is selected the AM NOISE annunciator will be illuminated.

FRONT PANEL FEATURES

- 15. MODE. Used to select either a phase noise or AM noise measurement. AM noise is only installed with Option 130.
- 16. LOCK BANDWIDTH FACTOR. These five switches partially control the bandwidth of the phase lock loop, by setting the gain for a number of operational amplifiers in the Carrier Noise Test Set. Another factor in determing the loop bandwidth is the frequency of the microwave test signal or the FM deviation set on the device under test or the tunable 5 to 1280 MHz source.
- 17. LINE SWITCH. Applies ac power to the Carrier Noise Test Set when set to the ON position.
- 18. CAPTURE. When CAPTURE is pressed the phase lock loop is changed from a second order loop to a first order loop. The phase lock loop consists of a voltage controlled oscillator (the tunable 5 to 1280 MHz source or the device under test), a phase detector and loop filter. The phase detector and loop filter are in the Carrier Noise Test Set. By changing to a first order loop the bandwidth of the loop is widened. By widening the loop bandwidth, acquiring phase quadrature is made easier. When CAPTURE is pressed the LOCK BANDWIDTH FACTOR buttons are overridden.

REAR PANEL FEATURES

1. LOOP TEST PORT IN. If a phase noise measurement is made within the phase lock loop bandwidth some of the phase noise will be suppressed. The LOOP TEST PORT IN connector lets the user input a signal to determine the transfer characteristic of the phase lock loop. Once the transfer characteristic is known the amount of noise suppression at any offset within the loop bandwidth can be determined. The amount of phase noise suppression is then used to correct the measured phase noise level.


This is a dc coupled female BNC connector with a nominal input impedance of $10k\Omega$. The signal input should be from a random noise source, a tracking generator or a variable frequency sine wave source. The input level is typically less than 0.1 volts peak. The typical bandwidth is dc to 100 kHz.

2. FREQ-CONT X-OSC. This output is to be connected to the frequency control input of the tunable 5 to 1280 MHz source or the device under test (whichever is being used as the loop VCO) if the loop VCO requires ±10 volts dc for tuning. When so connected the loop VCO will change frequency to maintain phase quadrature between the device under test and the tunable 5 to 1280 MHz source.

This is a female BNC connector with an output impedance of 100Ω . The output level is nominal from -10 volts dc to +10 volts dc.

- 3. HP-IB ADDRESS SWITCH. Used to select one of 31 valid HP-IB addresses (00 through 30). The address is set in binary with A5 as the most significant bit and A1 as the least significant. To set a bit, "bit=1", slide the switch down. To clear a bit, "bit=0", slide the switch up. By setting TALK ONLY "TO" or LISTEN ONLY "LO" TO "1" the HP-IB address is overriden. When the address is changed the Carrier Noise Test Set must be turned off then back on. This is necessary so the microprocessor will be aware of the address change.
- 4. SERIAL NUMBER PLATE. First four digits and letter constitute the prefix which defines the instrument configuration. The last five digits form a sequential suffix that is unique to each instrument. The plate also indicates any options supplied with the instrument.
- 5. FUSE. Ordering information is presented in Section II, Installation.
- 6. LINE POWER MODULE. Permits operation from 100,120,220, or 240 Vac. The number visible in the window indicates nominal line voltage to which the instrument must be connected (see Figure 2-1). Center conductor is connected to the chassis for earth grounding.
- PULSED BASEBAND. Not available at this time.

REAR PANEL FEATURES

- 8. HP-IB CONNECTOR. 24-pin female connector used to connect the Carrier Noise Test Set to the Hewlett-Packard Interface Bus (HP-IB) for remote operation. Connection information is presented in Section II, Installation.
- 9. FREQ-CONT DC-FM. This output is to be connected to the frequency control input of the tunable 5 to 1280 MHz source or the device under test (whichever is being used as the loop VCO) if the loop VCO requires ± 1 volt dc for tuning. When so connected the loop VCO will change frequency to maintain phase quadrature between the device under test and the tunable 5 to 1280 MHz source.

This is a female BNC connector with a nominal output impedance of 50Ω . The output level is nominal from -1 volt dc to +1 volt dc.

10. LOOP TEST PORT OUT. Once a signal has been input at the LOOP TEST PORT IN connector, this output is connected to a spectrum analyzer for displaying the phase lock loop transfer characteristic.

This is a dc coupled female BNC connector with a nominal output impedance of 1 $k\Omega$ The gain outside the phase lock loop bandwidth is equal to one.

11. 640 MHz INPUT. This is a female BNC connector with a 50 Ohm input impedance. The input frequency must be 640 MHz \pm 32kHz. The input level must be \pm 1 dBm to \pm 4 dBm.

OPERATOR'S CHECKS

3-6. OPERATOR'S CHECKS

Description

Use the test set-up shown below to verify the front panel controlled functions are being executed by the microprocessor.

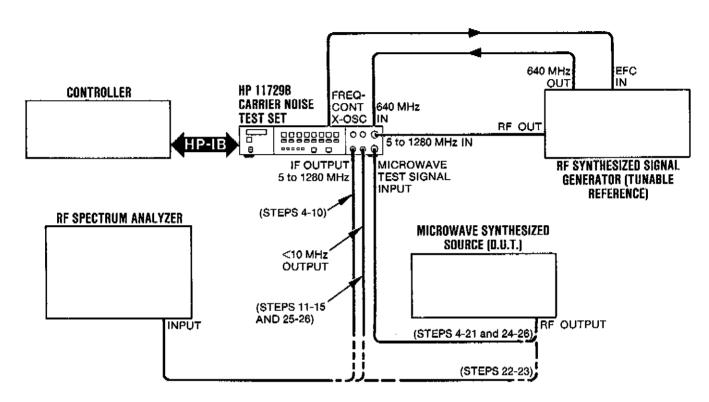


Figure 3-3. Basic Functional Checks Test Setup

Equipment

RF Synthesized Signal Generator ... HP 8662A (tunable reference) (Option 003) Microwave Synthesized Source HP 8340A (D.U.T.)

Computer Controller HP 85B RF Spectrum Analyzer HP 8566A

Procedure

Microprocessor Checks

- 1. Turn on and warm up all instruments for 30 minutes before proceeding.
- 2. Switch the Carrier Noise Test Set to ON and observe the front panel annunciators. An internal memory check of ROM and RAM is initiated when the Carrier Noise Test Set is switched on. If the memory system is working properly, all front panel annunciators will light for approximately 1.5 seconds. This also provides a quick visual inspection of each front panel annunciator.

If memory failure is detected, no front panel annunciators will light during the 1.5 second time period.

OPERATOR'S CHECKS

OPERATOR'S CHECKS (cont'd)

Procedure (cont'd)

3. Press the FILTER RANGE buttons and MEASUREMENT MODE button. The clicking sound verifies the switching control of the microprocessor and the switch operation.

IF OUTPUT Check

4. Set the D.U.T. as follows:

Frequency	 $2.32\mathrm{GHz}$
Amplitude	 +10 dBm

5. Set the Carrier Noise Test Set as follows:

Band center	. 1.92 GHz
Measurement Mode P	hase Noise

6. Adjust the spectrum analyzer to display the 400 MHz IF OUTPUT (D.U.T. frequency minus BAND CENTER frequency).

NOTE

Present at the IF OUTPUT will be the IF signal (signal under test minus the BAND CENTER frequency of the BAND RANGE chosen), IF harmonics and spurious signals. Any IF harmonics or spurious signals can be disregarded. The signal with the highest amplitude is the desired signal.

The harmonics of the IF signal do not affect the phase noise measurement since the NOISE SPECTRUM OUTPUTS are filtered. The spurious signals may appear as sidebands on the IF signal and as spurs at the NOISE SPECTRUM OUTPUTS.

- 7. Check that the IF OUTPUT level is above the specified limit of +7 dBm minimum. Record the actual value of the IF OUTPUT frequency and level in Table 3-1.
- 8. If the IF OUTPUT frequency and level did not measure within specified limits check the frequency and power level of the 640 MHz IN signal and the microwave test signal. If a problem still exists refer to the troubleshooting on Service Sheet 1.
- 9. Change the frequency of the D.U.T to the next microwave test signal frequency listed in Table 3-1. Change the BAND RANGE on the front panel to the next BAND. CENTER listed in Table 3-1.
- 10. Measure the IF OUTPUT frequency and level with the spectrum analyzer. Record the values and repeat the measurement for each of the BAND CENTER frequencies listed.

OPERATOR'S CHECKS

OPERATOR'S CHECKS (cont'd)

Procedure (cont'd)

Table 3-1. IF Output Check

Microwave Test Signal	Band Center	IF Output Frequency (MHz)		IF Output Level (dBm)	
(GHz)	(GHz)	Actual	Typical	Minimum	Actual
2.32	1.92		400	+7	
4.88	4.48		400	+7	
7.44	7.04		400	+7	
10.00	9.60		400	+7	
12.56	12.16		400	+7	
15.12	14.72		400	+7	
17.68	17.28		400	+7	

Phase Lock Check

- 11. Connect the <10 MHz OUTPUT from the Carrier Noise Test Set to the RF spectrum analyzer.
- 12. Set the Carrier Noise Test Set as follows:

NOTE

If this filter is not included in the Carrier Noise Test Set, select an available BAND RANGE.

13. Set the D.U.T. as follows:

NOTE

The test signal is tuned 400 MHz above the center frequency of the BAND RANGE selected on the Carrier Noise Test Set

14. Set the tunable reference as follows:

15. Press and release CAPTURE, on the Carrier Noise Test Set, to phase lock the D.U.T. to the tunable reference.

If the sources do not phase lock (green bar does not remain illuminated on the front panel phase lock indicator) the tunable reference must be tuned closer in frequency to the IF frequency ($f_{\rm IF}=f_{\rm d.u.t.}-f_{\rm band\ center\ frequency}$). Press CAPTURE while tuning the tunable reference in 1 kHz steps. Watch the phase lock indicator on the Carrier Noise Test Set. When the LED's on the indicator all light up, reduce the resolution of the tunable reference by a factor of 10.

OPERATOR'S CHECKS (cont'd)

Procedure (cont'd)

NOTE

Connect the spectrum analyzer to the <10 MHz OUTPUT, on the Carrier Noise Test Set, if difficulties occur in determining the direction to tune the tunable reference to acquire phase lock.

The signals displayed on the spectrum analyzer represent the frequency difference between the two inputs to an internal mixer/phase detector in the Carrier Noise Test Set. The signals will decrease in frequency to dc when tuning towards phase lock and increase in frequency when tuning away from phase lock.

Press CAPTURE and tune in this reduced resolution. Watch the red LEDS on the Carrier Noise Test Set phase lock indicator step through one side of the display - to the green bar - then to the other side of the display. Again reduce the resolution on the tunable reference by a factor of 10. Tune in this finer resolution until the green LED is illuminated. When the green LED is illuminated release CAPTURE.

Display Deviation Check

- 16. If the Carrier Noise Test Set is not phase locked perform the phase lock check (steps 11-15).
- 17. Hold CAPTURE in and increase the tunable reference in 10 Hz steps until the loop becomes unlocked. Watch the phase lock indicator, the red LEDs should fully light one at a time and move to the right. When the last LED is illuminated and you tune further the entire indicator should dimly light.

With CAPUTRE pressed decrease the tunable reference in 10 Hz steps. The dimly illuminated indicator should change back to the red LEDs one at a time fully illuminated and moving to the left. When the last LED on the left is illuminated and you tune further, the entire indicator will dimly light.

18. When the last LED on the left or right lights and the tunable reference is increased or decreased further, the indicator should immediately dimly light. If the indicator goes blank perform the phase lock indicator adjustments in Section V.

AM Mode Check

NOTE

Perform this check only when the AM Noise Option is installed.

19. Set the Carrier Noise Test Set as follows:

20. Set the D.U.T. as follows:

OPERATOR'S CHECKS (cont'd)

Procedure (cont'd)

- 21. AM modulate the microwave test signal at a 1 kHz rate.
- 22. Adjust the spectrum analyzer to view the 1 GHz signal and the 1 kHz AM sidebands.
- 23. Adjust the percent of AM modulation so that the 1 kHz AM sidebands are 40 dB below the 1 GHz carrier (approximately a 2% depth)
- 24. Disconnect the microwave test signal from the spectrum analyzer. Connect the microwave test signal to the MICROWAVE TEST SIGNAL INPUT on the Carrier Noise Test Set.
- 25. Connect the <10 MHz OUTPUT, on the Carrier Noise Test Set, to the spectrum analyzer.
- 26. Adjust the spectrum analyzer to view the 1 kHz detected signal. AM MODE is operating if the 1 kHz signal level is -7 dBm ± 3 dBm.

HP-IB Address Verification

27. Press and hold the front panel LOCAL key. The LED's on the BAND RANGE select buttons will display the current address in binary.

Example: Figure 3-4 shows the BAND RANGE select buttons displaying the factory preset address of 06 (00000110).

Figure 3-4. Displaying HP-IB Address

28. Check the address switch setting on the rear panel of the Carrier Noise Test Set to verify the display on the BAND RANGE select buttons is correct.

OPERATOR'S CHECKS (cont'd)

Procedure (cont'd)

Local/Remote Operation Check

29. Set the Carrier Noise Test Set to remote using the following:

Remote 706

- 30. Press any front panel key except LOCAL to verify that the front panel keys are disabled.
- 31. Press the LOCAL key. This switches the instrument out of the remote mode.

NOTE

When the local key is pressed the REMOTE annunciator will turn off, but the LISTEN annunciator will stay illuminated.

Now press any front panel key to verify the front panel keys are enabled.

Status Byte Check

32. Enter Program 1 into the computer. Insert the correct select code and HP-IB address, for your Carrier Noise Test Set, into the SPOLL function. The HP-IB address of the Carrier Noise Test Set is factory preset to 06. The user can select the HP-IB address by changing the position of the HP-IB address switches on the rear panel of the Carrier Noise Test Set. (Refer to Section II paragraph 2-7, HP-IB Address Selection, for further information.)

PROGRAM 1

10 A = SPOLL(###) (##

(### = Current Carrier Noise Test Set select code

20 DISP A

and address.)

30 GOTO 10

Example: 706

7 =Select code

06 = Address

This program monitors the status byte of the Carrier Noise Test Set and displays the equivalent decimal value on the computer. The status of the phase lock detector sent out over HP-IB should agree with the phase lock indicator on the front panel. Table 3-2 defines the status bits and their decimal equivalents for the two phase lock conditions.

Table 3-2. Status Bits and Their Decimal Equivalents for Two Phase Lock Conditions

Phase	Status Bits-Binary								Computer
Condition	8010	D107	0106	0105	0104	0103	0102	0101	Output*
unlocked	0	0	0	0	0	1	0	0	4
locked (green Bar)	0	0	0	0	0	0	1	0	2

OPERATOR'S CHECKS (cont'd)

Procedure (cont'd)

- 33. Set the Carrier Noise Test Set to the phase lock condition (green LED is illuminated on the front panel phase lock display). For help use the phase lock check (steps 11-15).
- 34. Run Program 1 and compare the number displayed on the computer to the phase condition of the phase lock indicator on the Carrier Noise Test Set. The computer displays a decimal 2 when in the phase lock condition.
- 35. Increase the frequency of the tunable reference by 1 MHz. Verify that the unlocked condition (red LED adjacent to the left of the green LED) is detected by the microprocessor. A decimal 4 should be displayed on the computer.

If the number (2 or 4) displayed on the computer does not correspond to the phase lock condition, displayed on the front panel phase lock indicator, perform the phase lock indicator adjustment procedures in Section V. Run Program 1 again to verify the adjustments.

3-7. GENERAL OPERATING INSTRUCTIONS

WARNING

Before the Carrier Noise Test Set is switched on, all protective earth terminals, extension cords, autotransformers, and devices connected to the instrument should be connected to a protective earth grounded socket. Any interruption of the protective earth grounding will cause a potential shock hazard that could result in personal injury.

CAUTION

Before the Carrier Noise Test Set is switched on, it must be set to the same line voltage as the power source or damage to the instrument may result.

3-8. Turn On

Turn-on Procedure. If the Carrier Noise Test Set is already plugged in, set the LINE switch to ON.

If the power cable is not plugged in, follow these instructions.

On the rear panel:

- Check the line voltage selection card for correct voltage selection.
- Check the fuse for correct current rating. The current rating is printed on the line power module label.
- 3. Plug in the power cable.

On the front panel, set the LINE switch to ON.

Turn-on Sequence. The Carrier Noise Test Set performs a quick memory check (ROM and RAM) at turn-on. During this check, all front panel annunciators light for approximately 1.5 seconds to allow a quick visual inspection of each front panel annunciator. If a memory failure is detected the front panel annunciators will not light during the 1.5 second time period.

Following the memory check the Carrier Noise Test Set powers up as follows:

Measurement — Phase Noise
Band Range — Band 1 (0.010—1.28 GHz)
Lock Bandwidth Factor — 100

NOTE

For the Carrier Noise Test Set to be operational it may require one or both of the following drive signals when making a phase noise measurement:

- A synthesized 640 MHz signal
- A tunable 5 to 1280 MHz signal

When using the Carrier Noise Test Set to make an AM noise measurement none of the drive signals are required.

The number of drive signals required is dependent on the measurement method chosen and the frequency of the signal under test.

The following table lists when the drive signals are required:

		Detector thod	Frequency Discriminator Method	
Orive Signal		y Range of nder Test	Frequency Range of Signal Under Test	
	10 MHz to 1.28 GHz	1.28 GHz to 18 GHz GHz	10 MHz to 18 GHz	
Fixed 640 MHz	Not needed	X	Х	
Tunable 5 to 1280 MHz Source	X	X	Not needed	

3-9. PHASE NOISE MEASUREMENT 3-10. Phase Detector Method

NOTE

The 640 MHz and 5-1280 MHz signals may come from the following sources:

- Two synthesized sources.
- One synthesized source and one cavity tuned source.
- Two cavity tuned sources.

Each configuration will have a different absolute system noise floor. The absolute system noise floor is a function of the noise contributions from the 640 MHz signal, 5-1280 MHz signal and the HP 11729B.

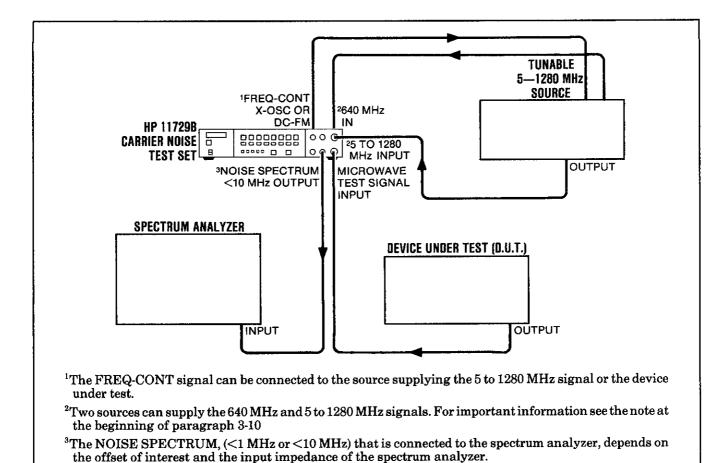


Figure 3-5. Interconnections to the Carrier Noise Test Set when making a Phase Noise Measurement (Using the Phase Detector Method)

To calculate the absolute system noise floor use the following formula:

$$\pounds_{
m system} = 10~log~(N^2 imes rac{\pounds_1}{10^{10}} + rac{\pounds_2}{10^{10}} + rac{\pounds_3}{10^{10}}) \ where$$

N = center frequency of selected filter/640MHz

 $\mathcal{L}_1 = absolute \ SSB \ phase \ noise \ of \ the \ 640$ MHz reference signal (dBc/Hz)

 $\pounds_2 = absolute SSB phase noise of the 5 to 1280 MHz tunable signal dBc/Hz$

 $\mathcal{L}_3 = residual \ noise \ of \ the \ HP \ 11729B \ (dBc/Hz)$

Two synthesized sources with their crystal time bases connected externally will give the lowest close in noise floor performance. When a synthesized source and a cavity tuned source are used the 640 MHz signal should come from the synthesized source. A synthesized source is desired for the 640 MHz signal since the 640 MHz signal

multiplied to a microwave frequency is the major contributor to the system noise floor. If the cavity tuned source selected has a wide DC-FM bandwidth and Loop Holding Range this will help to phase lock a drifting source. If two cavity tuned sources are used the absolute system noise floor closein will be degraded but the noise floor further out will be better.

- 1. Figure 3-5 shows the interconnections to the Carrier Noise Test Set when making a phase noise measurement.
- 2. Be sure the LINE MODULE, on the rear panel, is set to the available line voltage. If it needs to be changed see Figure 2-1 in Section II.
- 3. Plug the Carrier Noise Test Set into the available line supply.
- 4. Turn the Carrier Noise Test Set on and allow a 30 minute warm-up before making any measurements.

5. If the microwave test signal is in the range of 0.010—1.28 GHz go to step 6. If the microwave test signal is greater than 1.28 GHz follow the instructions for step 5.

Using a coaxial cable connect the synthesized 640 MHz source to the 640 MHz IN connector on the rear panel.

6. Using a coaxial cable connect the FREQ-CONT X-OSC or FREQ-CONT DC-FM, on the rear panel, to an electronic frequency control port on either the tunable 5 to 1280 MHz source or the device under test.

Either FREQ-CONT X-OSC or FREQ-CONT DC-FM can be used to control the voltage controlled oscillator (VCO) of the phase lock loop. The output chosen will depend on the control voltage required for the VCO. FREQ-CONT X-OSC has an output voltage of -10 volts dc to +10 volts dc. FREQ-CONT DC-FM has an output voltage of -1 volt dc to +1 volt dc. When either output is used the device under test and the tunable 5 to 1280 MHz source will be maintained in phase quadrature (that is, 90 degrees out of phase).

- 7. Using a coaxial cable connect the tunable 5 to 1280 MHz source to the 5 to 1280 MHz IN connector on the front panel. Be sure the tunable 5 to 1280 MHz source is set to 0 dBm.
- 8. Using a coaxial cable connect the device under test to the MICROWAVE TEST SIGNAL INPUT on the front panel.
- 9. Using a coaxial cable connect one of the NOISE SPECTRUM OUTPUTS <1 MHz or <10 MHz, on the front panel, to a spectrum analyzer. The <1 MHz OUTPUT is useful for measuring phase noise at offsets from dc to 1 MHz. The <10 MHz OUTPUT is useful for measuring phase noise at offsets from 10 Hz to 10 MHz and has 40dB of gain over the <1 MHz OUTPUT. The <1 MHz OUTPUT has an output impedance of 600Ω and the <10 MHz OUTPUT has an output impedance of 50Ω.</p>

NOTE

Do not use the <10 MHz NOISE SPEC-TRUM OUTPUT for test signals ±20 MHz around the BAND CENTER frequency. High feedthrough signals (mixer sum products and LO signals) saturate the Low Noise Amplifier in the Carrier Noise Test Set and possibly the spectrum analyzer.

Do not use the <1 MHz NOISE SPECTRUM OUTPUT for test signals ± 5 MHz around the BAND CENTER frequency. LO feedthrough may possibly saturate the spectrum analyzer.

For test signals ± 5 MHz to 10 MHz around the BAND CENTER frequency the measured noise level will be 0 dBm to +3 dBm greater than the actual level. The error is caused by an impedance change on the input of the internal Low Noise Amplifier.

For test signals \pm 10 MHz to 20 MHz around the BAND CENTER frequency the measured noise level will be 0 dBm to \pm 1 dBm greater than the actual level. Again the error is caused by an impedance change on the input of the Low Noise Amplifier.

Therefore, the <1 MHz OUTPUT can be used for test signals \pm 5 MHz to 20 MHz around the BAND CENTER frequency by subtracting the maximum error amount from the measured level.

- 10. To select a PHASE NOISE MEASURE-MENT press the MODE button ,on the front panel, until the LED opposite PHASE NOISE is illuminated.
- 11. Set the LOCK BANDWIDTH FACTOR to 100.
- 12. Select the BAND RANGE that includes the frequency of the signal under test. For example, if the frequency of the signal under test is 10 GHz then the BAND RANGE would be 8.32—10.88 GHz. Select this filter.
- 13. Connect the IF OUTPUT, on the front panel, to a spectrum analyzer.

NOTE

Present at the IF OUTPUT will be the IF signal (signal under test minus the BAND CENTER frequency of the BAND RANGE chosen), IF harmonics and spurious signals. The signal with the highest amplitude is the desired signal.

Adjust the spectrum analyzer to determine the frequency of the IF OUTPUT (signal under test minus

the BAND CENTER frequency of the BAND RANGE chosen). Set the tunable 5 to 1280 MHz source to the frequency read on the spectrum analyzer. Disconnect the IF OUTPUT from the spectrum analyzer.

NOTE

The following applys to those users with an IF signal of 625 MHz to 655 MHz.

IF signals between 625 MHz to 655 MHz cause a high level spur from one or both of the NOISE SPECTRUM OUTPUTS. When setting the reference level on the spectrum analyzer, during calibration, use the beat note and not the high level spur. The high level spur is a mixer product from the 640 MHz rear panel input and the 5 to 1280 MHz front panel input. The spur is within the passband of the NOISE SPECTRUM OUTPUT, so it does not get filtered out.

For example: with a 635 MHz IF signal you can expect a 5 MHz high level spur from the <10 MHz OUTPUT.

- 14. Calibration. At calibration a reference level is being set on the spectrum analyzer. The Carrier Noise Test Set's effect on a given noise input is being used to set the reference level. Below is an example of how to set the reference level on the spectrum analyzer for making a phase noise measurement:
 - a. Increase the tunable 5 to 1280 MHz source by 50 kHz. This will produce a 50 kHz beat note at the NOISE SPECTRUM OUTPUTS. This 50 kHz offset is given as an example only. A different offset may be required because of the frequency range of the spectrum analyzer or to make it easier to calibrate with a fast drifting source.
 - b. Add 40 dB of attenuation to the tunable 5 to 1280 MHz signal.

CAUTION

Do not set the attenuation any higher than -30 dBm. -30 dBm or lower is necessary for a linear calibration.

- c. Adjust the spectrum analyzer so the 50 kHz beat note is on the screen and placed at a convenient reference point. Record the level of the reference point for use later.
- d. This reference point represents the power in the carrier minus 40 dB.
- e. Remove the 50 kHz offset and 40 dB of attenuation from the tunable 5 to 1280 MHz signal.
- f. The spectrum analyzer is now ready to be used for making a measurement.
- 15. Phase Locking. The following discussion describes two methods for phase locking the device under test and the tunable 5 to 1280 MHz source.

When the device under test is a synthesized or very stable source, phase locking can be accomplished using either the FREQ-CONT X-OSC or FREQ-CONT DC-FM connector and the following procedure. The FREQ-CONT X-OSC or FREQ-CONT DC-FM connector is connected to the electronic frequency control input of the tunable 5 to 1280 MHz source or the device under test.

The connector chosen will depend on the tuning voltage required by the loop VCO (device under test or the 5 to 1280 MHz source).

- a. Set the LOCK BANDWIDTH FACTOR to 100.
- b. On the front panel press then release CAPTURE.
- c. If phase lock is acquired, a green LED will be illuminated in the center of the phase lock indicator, on the left side of the front panel.
- d. If the two sources did not phase lock proceed as follows. Connect the <10 MHz OUTPUT, on the front panel, to a spectrum analyzer with a 50 Ohm input impedance and a bandwidth that includes 10 Hz to 10 MHz. Adjust the spectrum analyzer to view the beat note. The beat note is the difference between the tunable 5 to 1280 MHz signal and the microwave test signal minus the BAND CENTER frequency of the BAND RANGE chosen.

Hold CAPTURE in while tuning the tunable 5 to 1280 MHz source until a green LED is seen in the center of the phase lock indicator. The frequency resolution of the tunable 5 to 1280 MHz source should be <1/10 of the effective tuning range of it's crystal oscillator.

Figure 3-6 shows what the spectrum analyzer display should look like if the tunable 5 to 1280 MHz source is being tuned in the direction of phase lock (that is, towards dc) or tuned away from phase lock. Figure 3-7 shows what the phase lock indicator, on the front panel, should be like as the two sources get closer to phase lock. Release CAPTURE and the two sources should now be phase locked.

e. If the device under test and the tunable 5 to 1280 MHz source are still not phase locked increase the LOCK BANDWIDTH FACTOR to 1k. Press and release CAPTURE. The two sources should now be phase locked. If phase lock was aquired go to step g. If phase lock was not aquired go to step f.

NOTE

If the HP 8662A is used as the tunable 5 to 1280 MHz source, and the system is locked using the crystal of the HP 8662A, the 1k LOCK BANDWIDTH FACTOR may cause an unstable phase lock loop for microwave test signals greater than 5 GHz. If the loop is unstable lower the LOCK BANDWIDTH FACTOR to 100. If the loop is still unstable try locking using DC-FM.

- f. If the two sources are still not phase locked try locking using a loop VCO with a larger electronic tuning range.
- g. Reduce the LOCK BANDWIDTH FACTOR if close-in measurements are desired. Make sure the phase lock indicator remains green or stays within the wide section of the indicator. If lock is broken, hold CAPTURE in while tuning the tunable 5 to 1280 MHz source until the center green LED is illuminated on the phase lock indicator. When the green LED is illuminated release CAPTURE. If the green LED doesn't stay illuminated increase the LOCK BANDWIDTH FACTOR and press CAPTURE to re-enable lock. For accurate measurements reduce the loop bandwidth to

below the lowest offset frequency of interest. Use the following equation to find the maximum loop bandwidth for the offset frequency of interest.

NOTE

Phase noise is suppressed within the phase lock loop bandwidth.

Nominal loop bandwidth =
$$\frac{f_{dut} \times LBF \times K_o}{100}$$
 (Hz)

f = frequency(Hz)

dut= device under test

LBF= LOCK BANDWIDTH FACTOR

 $K_o = The \ VCO \ slope in \ Hz/volt (For the HP 8662A \ K_o \ equals \ 10^{-1} \ Hz/volt)$

When the device under test is a free-running source and the loop VCO has a DC-FM feature use the following procedure.

h. Connect the FREQ-CONT X-OSC or FREQ-CONT DC-FM connector to the electronic frequency control input of the loop VCO. The connector used will depend on the tuning voltage required for DC-FM.

Set the loop VCO as follows:

- DC-FM
- 50 kHz deviation
- Set amplitude to 0 dBm
- i. Set the LOCK BANDWIDTH FACTOR to 100.
- j. Connect the <10 MHz OUTPUT, on the front panel, to a spectrum analyzer with a 50 Ohm input impedance and a bandwidth that includes 10 Hz to 10 MHz. Adjust the spectrum analyzer to view the beat note. The beat note is the difference between the tunable 5 to 1280 MHz signal and the microwave test signal minus the BAND CENTER frequency of the BAND RANGE chosen.

Hold CAPTURE in while tuning the loop VCO until a green LED is seen in the center of the phase lock indicator. The frequency resolution of the loop VCO should be <1/10 of the effective tuning range of it's crystal oscillator.

Figure 3-6 shows what the spectrum analyzer display should look like if the loop VCO is

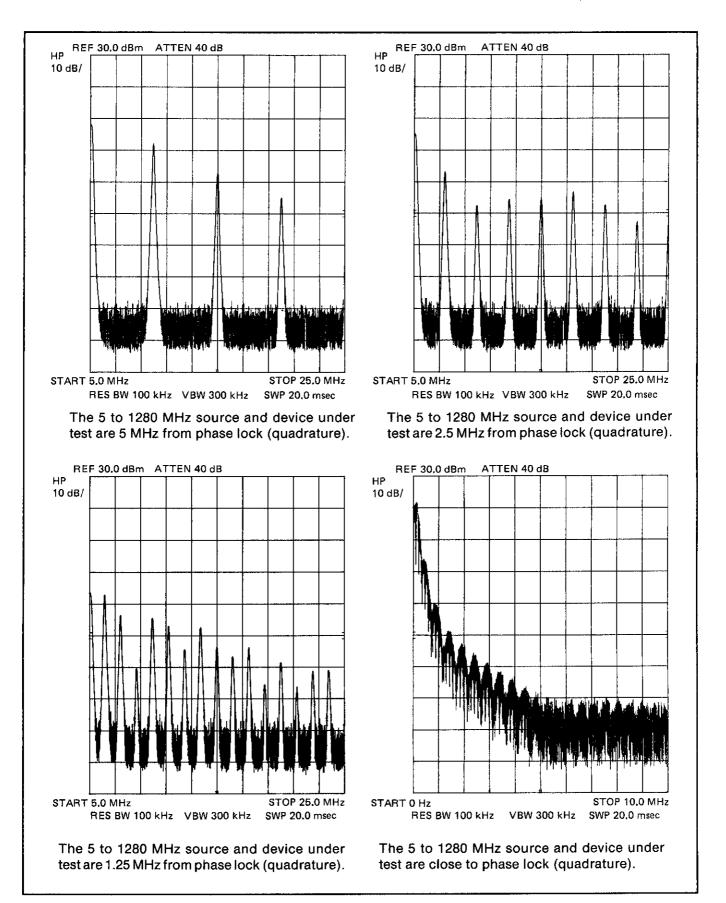


Figure 3-6. Spectrum Analyzer Displays Used for Acquiring Phase Lock (Quadrature)

being tuned in the direction of phase lock (that is, towards dc) or tuned away from phase lock. Figure 3-7 shows what the phase lock indicator, on the front panel, should be like as the two sources get closer to phase lock. Release CAPTURE and the two sources should now be phase locked.

If the sources drift out of phase lock repeat the procedure, then after releasing CAPTURE immediately increase the FM deviation to 100 kHz. Again be sure the two sources stay phase locked.

k. If the two sources are still not phase locked repeat the preceeding step, each time increasing the FM deviation until maximum deviation is reached. If maximum deviation is reached and the two sources still will not stay locked, repeat step j but this time increase the LOCK BANDWIDTH FACTOR until the two sources are phase locked. When the two sources are phase locked go to step m.

1. If the two sources are still not locked try making the measurement using the Frequency Discriminator Method.

m. Reduce the LOCK BANDWIDTH FAC-TOR if close in measurements are desired. Make sure the phase lock indicator remains green or stave within the wide section of the indicator. If lock is broken, hold CAPTURE in while tuning the tunable 5 to 1280 MHz source until the center green LED is illuminated on the phase lock indicator. When the green LED is illuminated release CAPTURE. If the green LED doesn't stay illuminated increase the LOCK BAND-WIDTH FACTOR and press CAPTURE to reenable lock. For accurate measurements reduce the loop bandwidth to below the lowest offset frequency of interest. Use the following equation to find the maximum loop bandwidth for the offset frequency of interest.

NOTE

Phase noise is suppressed within the phase lock loop bandwidth.

A solid red bar, to the left of the center green bar, indicates the signal under test and the tunable 5 to 1280 MHz signal are not phase locked and >100 kHz apart.

The red LEDs, within the display, step one at a time as the signal under test and the tunable 5 to 1280 MHz signal approach quadrature.

With the display all illuminated the signal under test and the tunable 5 to 1280 MHz signal are <100 kHz apart.

A green LED in the center of the display indicates that the signal under test and the tunable 5 to 1280 MHz signal are in quadrature.

Figure 3-7. Front Panel Phase Lock (Quadrature) Indicator

 $\begin{array}{c} Nominal \\ loop\ bandwidth = \ \frac{f_{dut}\ x\ LBF\ x\ K_o}{100} \end{array}$

f = Frequency (Hz)

dut = Device under test

LBF = Lock Bandwidth Factor

K_o = The VCO slope in Hz/volt (For the HP 8662A K_o equals 10⁻¹ Hz/volt)

- 16. Measurement. With the spectrum analyzer calibrated and phase lock acquired, a phase noise measurement may now be made. When making a phase noise measurement the following items must be taken into consideration:
 - Set the spectrum analyzer span to cover the offset frequency of interest.
 - Do not change the input sensitivity of the spectrum analyzer. Changing the spectrum analyzer input sensitivity between calibration and measurement decreases the measurement accuracy. For better accuracy recalibrate on a lower level calibration signal. See step 14 of this procedure.
 - Select an appropriate resolution bandwidth for the the chosen frequency span (at least <1/10 frequency span).
 - Because phase noise is a random quantity, some sort of averaging or video filtering is desired.
 - In general, it is not advisable to take measurements on a portion of the spectrum analyzer display where the noise level is falling very rapidly (>20 dB per major division). Therefore, increase the frequency span to where the offset frequency of interest is in the center of the spectrum analyzer display.
 - It is not recommended to measure noise levels that are in the bottom 10 dB of the display.
 - In general, if spurious signals are seen when making a measurement they can be disregarded. Reduce the resolution bandwidth if necessary to determine the noise level near the spur. Be careful not to measure on a spur.
 - With the preceding considerations in mind, a measurement can now be made. Measure down from the reference point (step 14 c.) at the offset of interest.

- 17. **Corrections¹.** Subtract the reference level set during calibration from the level of the noise measured at the offset of interest. Sum this value and the following correction factors.
 - Minus 40 dB for the attenuation added during calibration.
 - Minus 6 dB for conversion to Lt.
 - Minus 10 log(1.2 x spectrum analyzer resolution bandwidth). This is for normalization to a 1 Hz noise equivalent bandwidth. The result is in dB.
 - Plus 2.5 dB is the correction for log amplifiers and peak detectors used in an analog spectrum analyzer.
 - Plus loop noise suppression² at the appropriate offset frequency. Only add loop noise suppression when making a measurement inside the loop bandwidth.

Below is an example of how to calculate the correct amount of phase noise:

- -67 dBm = measured phase noise.
- -10 dBm = reference level set during calibration.
 - -40 dB = attenuation added during calibration.
 - -6 dB = to convert the measured phase noise to single sideband.
- $-20.8 \text{ dB} = 10 \log (1.2 \text{ x spectrum analyzer}$ resolution bandwidth).
- +2.5 dB = if an analog spectrum analyzer is used.
- $+20~\mathrm{dB} = \mathrm{for\ loop\ noise\ suppression\ if}$ the measurement is made within the loop bandwidth.

-67 dBm - (-10 dBm) +(-40 dB) +(-6 dB) +(-20.8 dB) +(2.5 dB)

+(20 dB) = -101.3 dBc/Hz

The actual amount of phase would then be -101.3dBc/Hz.

After applying these correction factors the actual amount of phase noise is known for the particular frequency offset.

¹For a complete explanation of the correction factors see Appendix C.

²See Appendix D to determine the phase lock loop transfer characteristic and the amount of loop noise suppression.

3-11. Frequency Discriminator Method

- 1. Figure 3-8 shows interconnections to the Carrier Noise Test Set when making a phase noise measurement.
- 2. Be sure the LINE MODULE on the rear panel is set to the available line voltage. If it needs to be changed see Figure 2-1 in Section II.
- 3. Plug the Carrier Noise Test Set into the available line supply.
- 4. Turn the Carrier Noise Test Set on and allow a 30 minute warm-up before making any measurements.
- 5. If the microwave test signal is from 0.010—1.28 GHz go to step 6. If the microwave test signal is greater than 1.28 GHz follow the instructions for step 5.
 - Using a coaxial cable connect a 640 MHz source to the 640 MHz IN connector on the rear panel.
- 6. Using a coaxial cable connect the device under test to the MICROWAVE TEST SIGNAL INPUT connector on the front panel.
- 7. Connect the IF OUTPUT, on the front panel, to a spectrum analyzer.

- 8. To select a PHASE NOISE MEASUREMENT press the MODE button, on the front panel, until the LED opposite PHASE NOISE is illuminated.
- Select the BAND RANGE that includes the frequency of the signal under test. For example, if the frequency of the signal under test is 10 GHz then the BAND RANGE would be 8.32-10.88 GHz. Select this filter.
- 10. The LOCK BANDWIDTH FACTOR can be at any setting.
- 11. Using a spectrum analyzer determine the frequency at the IF OUTPUT (signal under test minus the BAND CENTER frequency of the BAND RANGE chosen).

NOTE

A number of signals will be present at the IF OUTPUT. The signals present will include the IF signal (signal under test minus the BAND CENTER frequency of the BAND RANGE chosen), IF harmonics and spurious signals. The signal with the highest amplitude is the desired signal.

Note the frequency for use later. Disconnect the IF OUTPUT from the spectrum analyzer.

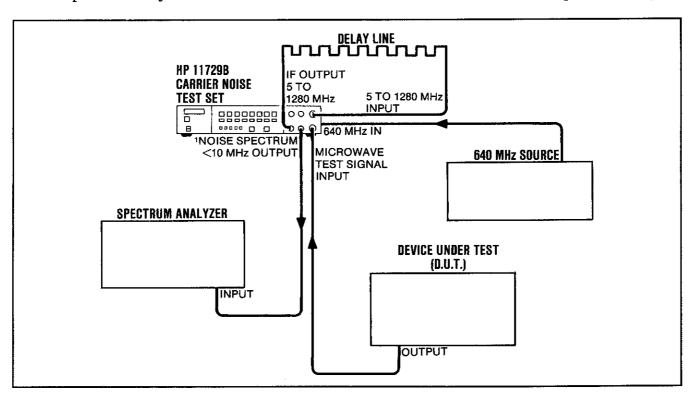


Figure 3-8. Interconnections to the Carrier Noise Test Set When Making a Phase Noise Measurement (Using the Frequency Discriminator Method)

Frequency Discriminator Method (cont'd)

- 12. Connect a suitable delay line (such as a length of flexible RF cable) between the IF OUTPUT and the 5 to 1280 MHz INPUT, on the front panel. The length of delay line effects the sensitivity of the descriminator. In general, sensitivity increases with cable length. 1.5 ns/foot is the approximate amount of delay for flexible RF cable when the cable dielectric is Teflon.
- 13. Set the tunable 5 to 1280 MHz source to the following conditions:

Frequency: Same as measured in step 11.

Amplitude: -10 dBm

Modulation: FM 1 kHz rate

- 14. Connect the tunable 5 to 1280 MHz signal to the input of the spectrum analyzer.
- 15. Set the FM sidebands on the tunable 5 to 1280 MHz signal to a convenient carrier to sideband ratio. The ratio should be at least 20 dB at a 0.2 kHz rate. Note the difference between the carrier and sidebands for use later.
- 16. Disconnect the device under test from the Carrier Noise Test Set and the tunable 5 to 1280 MHz source from the spectrum analyzer. Connect the tunable 5 to 1280 MHz source to the MICROWAVE TEST SIGNAL INPUT connector on the Carrier Noise Test Set. Enable the 0.010—1.28 GHz BAND RANGE.
- 17. Connect the <10 MHz OUTPUT, on the Carrier Noise Test Set front panel, to the spectrum analyzer.

NOTE

Do not use the <10 MHz NOISE SPECTRUM OUTPUT for test signals ±20 MHz around the BAND CENTER frequency. High feedthrough signals (mixer sum products and LO signals) saturate the Low Noise Amplifier in the Carrier Noise Test Set and possibly the spectrum analyzer.

Do not use the <1 MHz NOISE SPECTRUM OUTPUT for test signals ± 5 MHz around the BAND CENTER frequency. LO feedthrough may possibly saturate the spectrum analyzer.

For test signals ± 5 MHz to 10 MHz around the BAND CENTER frequency the measured noise level will be $0\,\mathrm{dBm}$ to

+3 dBm greater than the actual level. The error is caused by an impedance change on the input of the internal Low Noise Amplifier.

For test signals ±10 MHz to 20 MHz around the BAND CENTER frequency the measured noise level will be 0 dBm to +1 dBm greater than the actual level. Again the error is caused by an impedance change on the input of the Low Noise Amplifier.

Therefore, the <1 MHz OUTPUT can be used for test signals ±5 MHz to 20 MHz around the BAND CENTER frequency by subtracting the maximum error amount from the measured level.

- 18. Increase or decrease the frequency of the tunable 5 to 1280 MHz source until a green LED is seen in the center of the phase lock indicator on the Carrier Noise Test Set. The frequency resolution of the tunable 5 to 1280 MHz source should be <1/10 of $1/\tau_d$. τ_d is the time delay caused by the cable connected from the IF OUTPUT to the 5 to 1280 MHz IN. Once quadrature is established adjust the spectrum analyzer to position the 1 kHz FM sideband at the top line on the spectrum analyzer. Note the level of the 1 kHz sideband for use later.
- 19. Disconnect the tunable 5 to 1280 MHz source from the Carrier Noise Test Set. Connect the device under test to the MICROWAVE TEST SIGNAL INPUT connector on the Carrier Noise Test Set. Select the proper BAND RANGE for the frequency of the signal under test.
- 20. Increase or decrease the length of the delay line or the frequency of the device under test to establish quadrature. The frequency resolution of the device under test should be <1/10 of $1/\tau_{\rm d}$. When quadrature is set a green LED will be illuminated in the center of the phase lock indicator on the Carrier Noise Test Set.
- 21. Measurement. With calibration completed a measurement can now be made. When making a phase noise measurement the following items must be taken into consideration:
 - The operator should be aware that voltage fluctuations caused by frequency fluctuations are being measured. Phase fluctuations are not being measured.

Frequency Discriminator Method (cont'd)

- Set the spectrum analyzer span to cover the offset frequency of interest.
- Do not change the input sensitivity of the spectrum analyzer. Changing the spectrum analyzer input sensitivity between calibration and measurement decreases the measurement accuracy. For better accuracy recalibrate on a lower level calibration signal. See steps 14—18 to recalibrate.
- Select a resolution bandwidth that is appropriate for the chosen frequency span (at least <1/10 frequency span).
- Because phase noise is a random quantity, some sort of averaging or video filtering is desired.
- In general, it is not advisable to take measurements on a portion of the spectrum analyzer display where the noise level is falling very rapidly (>20 dB per major division). Therefore, increase the frequency span to where the offset frequency of interest is in the center of the spectrum analyzer display.
- It is not recommended to measure noise levels that are in the bottom 10 dB of the display.
- In general, if spurious signals are seen when making a measurement they can be disregarded. If necessary, reduce the resolution bandwidth to determine the noise level close to the spur.
- With the preceding considerations in mind, a measurement can now be made. Measure down from the reference point (step 18) at the offset of interest.
- 22. **Corrections**¹. Subtract the reference level set in step 18 from the measured level. Sum this result with the following correction factors:
 - Minus the carrier to sideband ratio set in step 15.
 - Minus 20 log ($f_{off}/1$ kHz) dB. This formula will convert frequency fluctuations at any offset to \pounds_f dBc. \pounds_f dBc = 10 log Pssb/Ps where Pssb is the power density (in one phase modulation sideband) and Ps is the total signal power.

- Minus 10 log (1.2 x spectrum analyzer resolution bandwidth). This is for normalization to a 1 Hz noise equivalent bandwidth. The result is in dB.
- Plus 2.5 dB is the correction for log amplifiers and peak detectors used in an analog spectrum analyzer.

Below is an example of how to calculate the correct amount of phase noise:

- -67 dBm = measured phase noise.
- -10 dBm = reference level set during calibration.
- -20 dB = carrier to sideband ratio set in step 15.
- $-10 \, \mathrm{dB} = 20 \log \left(f_{\text{off}} / 1 \, \text{kHz} \right) \, \mathrm{db}$. This formula is used to convert frequency fluctuations at any offset to $\mathcal{L}_{\text{f}} \, \mathrm{dBc}$.
- $-20.8 \text{ dB} = 10 \log (1.2 \text{ x spectrum analyzer}$ resolution bandwidth).
- +2.5 dB = if an analog spectrum analyzer is used.
- $-67 \,\mathrm{dBm} (-10 \,\mathrm{dBm}) + (-20 \,\mathrm{dB}) + (-10 \,\mathrm{dB}) + (-20.8 \,\mathrm{dB}) + (2.5 \,\mathrm{dB}) = -105.3 \,\mathrm{dBc/Hz}$

The actual amount of phase would then be $-105.3 \, \mathrm{dBc/Hz}$.

After applying these correction factors the actual amount of phase noise will be known at a particular offset, provided the sensitivity, set-up with the delay line, is lower than the phase noise of the device under test.

3-12. AM Measurement (Option 130 only)

- 1. Figure 3-9 shows interconnections to the Carrier Noise Test Set when making an AM noise measurement.
- 2. Be sure the LINE MODULE on the rear panel is set to the available line voltage. If it needs to be changed see Figure 2-1 in Section II.
- 3. Plug the Carrier Noise Test Set into the available line supply.
- 4. Turn the Carrier Noise Test Set on and allow a 30 minute warm-up before making any measurements.
- 5. Set the device under test to the frequency of interest. Measure the power out of the device under test with a power meter. Note the power level for use later.

¹For a complete explanation of the correction factors see Appendix C.

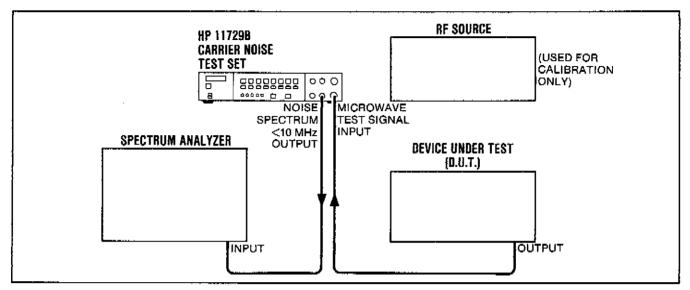


Figure 3-9. Interconnections to the Carrier Noise Test Set When Making an AM Noise Measurement

AM Measurement (Option 130 only) (cont'd)

- 6. Set the RF source to 1 GHz.
- 7. Set the power of the RF source to the same power as that measured in step 5. Use a power meter to measure the power.
- 8. Connect the RF source to a spectrum analyzer. Set the displayed RF source to a convenient reference point on the spectrum analyzer.
- 9. Amplitude modulate the RF source at a 1 kHz rate. Adjust the AM level so the AM sidebands are -40 dBc.

NOTE

If the RF source is a non-synthesized source the modulating rate may have to be increased. This is so the AM sidebands can be seen on the spectrum analyzer display.

- Press the MODE button, on the front panel of the Carrier Noise Test Set, until the LED next to AM MEASUREMENT is illuminated. No other Carrier Noise Test Set front panel functions are used.
- 11. Disconnect the RF source from the spectrum analyzer. Connect the RF source to the MIC-ROWAVE TEST SIGNAL INPUT connector on the front panel of the Carrier Noise Test Set.
- 12. Connect the <10 MHz OUTPUT, on the front panel of the Carrier Noise Test Set, to the spectrum analyzer.

- 13. Set a reference point with the demodulated 1 kHz signal on the spectrum analyzer. Note the reference level for use later.
- 14. Disconnect the RF source from the Carrier Noise Test Set. Connect the device under test to the MICROWAVE TEST SIGNAL INPUT connector on the front panel of the Carrier Noise Test Set.
- 15. Measurement. With calibration completed a measurement can now be made. When making an AM measurement the following items must be taken into consideration:
 - Set the spectrum analyzer span to cover the offset frequency of interest.
 - Do not change the input sensitivity of the spectrum analyzer. Changing the spectrum analyzer input sensitivity between calibration and measurement decreases the measurement accuracy. For better accuracy recalibrate on a lower level calibration signal. Use steps 5—13 to recalibrate the spectrum analyzer.
 - Select a resolution bandwidth that is appropriate for the chosen frequency span (at least < 1/10 frequency span).
 - Because AM noise is a random quantity, some sort of averaging or video filtering is desired.

HPAIE

AM Measurements (Option 130 only) (cont'd)

- In general, it is not advisable to take measurements on a portion of the spectrum analyzer display where the noise level is falling very rapidly (>20 dB per major division). Therefore, increase the frequency span to where the offset frequency of interest is in the center of the spectrum analyzer display.
- It is not recommended to measure noise levels that are in the bottom 10 dB of the display.
- In general, if spurious signals are seen when making a measurement they can be disregarded. If necessary, reduce the resolution bandwidth to determine the noise level close to the spur.
- A measurement can now be made. Measure down from the reference point set in step 13 at the offset of interest.
- 16. Corrections. Substract the reference level in step 13 from the measured level. Sum this result with the following correction factors:

- Minus 40 dB (The carrier to sideband ratio set in step 9)
- Minus 10 log (1.2 x specturm analyzer resolution bandwidth). This is for normalization to a 1 Hz noise equivalent bandwidth. The result is in dB.
- Plus 2.5 dB is the correction for log amplifiers and peak detectors used in an analog spectrum analyzer.

Below is an example of how to calculate the correct amount of AM noise:

- -67 dBm = measured AM noise.
- -10 dBm = reference level set during calibration.
- -40 dB = The carrier to sideband ratio set in step 9.
- $-20.8 \text{ dB} = 10 \log (1.2 \text{ x spectrum analyzer}$ resolution bandwidth).
- $+2.5 \, \mathrm{dB} = \mathrm{if}$ an analog spectrum analyzer is used
- -67 dBm (-10 dBm) + (-40 dB) + (-20.8 dB) + (2.5 dB) = -115.3 dBc/Hz
- The actual amount of AM noise would then be -115.3 dBc/Hz.

Table 3-3. HP-IB Message Reference Table (1 of 2)

HP-IB Message	Applicable	Response	Related Commands & Controls	Interface Functions
Data	Yes	All Carrier Noise Test Set functions available in local, except the LINE switch, are bus-programmable.		AH1,SH1 T5, TE0, L3, LE0
Trigger	No	The Carrier Noise Test Set has no trigger capability.		DT0
Clear	Yes	The clear message sets the Carrier Noise Test Set to the following conditions: Filter 1 ON Phase Lock Bandwidth 100 Hz Phase noise measurement Capture OFF	DCL, SDC	DC1
Remote	Yes	Remote mode is enabled when the REN bus control line is true. However, remote mode is not entered until the first time the Carrier Noise Test Set is addressed to listen. The front-panel REMOTE annunciator lights when the instrument is actually in the remote mode. No instrument settings or functions are changed, but all front-panel keys except LOCAL are disabled.	REN	RL1

¹For a complete explanation of the correction factors see Appendix C.

Table 3-3. HP-IB Message Reference Table (2 of 2)

HP-IB Message	Applicable	Response	Related Commands & Controls	Interface Functions
Local	Yes	The Carrier Noise Test Set returns to local mode (front-panel control). Responds equally to the GTL bus command and the front-panel LOCAL key. When entering local mode, no instrument settings or functions are changed.	GTL	RL1
Local Lockout	Yes	Disables all front-panel keys including LOCAL. Only the controller can return the Carrier Noise Test Set to local (front-panel control).	LLO	RL1
Clear Lockout Set Local	Yes	The Carrier Noise Test Set returns to local (front-panel control) and local lockout is cleared when the REN bus control line goes false. When entering local mode, no instrument settings or functions are changed.	REN	RL1
Pass Control Take Control	No	The Carrier Noise Test Set has no controller capability.		C0
Require Service (SRQ)	Yes	If the SRQ mask is set (see Table 3-4 HP-IB Program Codes for a description of @) and one of the following conditions is valid, then SRQ will be true. 1) Invalid command 2) System in phase lock 3) System out of phase lock	SRQ	SR1
Status Byte	Yes	The Carrier Noise Test Set responds to a Serial Poll Enable (SPE) bus command by sending an 8-bit byte when addressed to talk. If the instrument is holding the SRQ control line true (issuing the Require Service message) bit 7 (RQS bit) in the Status Byte and the bit representing the condition causing the Require Service message to be issued will both be true. The bits in the Status Byte are latched but can be cleared by: 1) Removing the causing condition, and 2) reading the Status Byte.	SPE,	T5, TE0
Status Bit	Yes	The status bit is used in a parallel poll, when enabled, and the SRQ line is true. The status bit position and the sense of the status bit (true high or true low) is set by the computer, with the parallel poll configure message.	PPE, PPD, PPC, PPU	PPI
Abort	Yes	The Carrier Noise Test Set stops talking and listening.	IFC	T5, TE0 L3, LE0

 $Complete \ HP-IB \ compatibility \ as \ defined \ in \ IEEE \ Standard \ 488 \ (and \ the \ identical \ ANSI \ Standard \ MC1.1) \ is: \ SH1, \ AH1, \ T5, \ TE0, \ L3, \ LE0, \ SR1, \ RL1, \ PP1, \ DC1, \ DT0, \ C0.$

Table 3-4. HP-IB Program Codes (Alphabetical Order by Code)

Program Code	Parameter
AM	AM noise measurement (Option 130 only)
@	Causes the Carrier Noise Test Set to accept the next data byte as a binary mask for the status byte. For example: A B C SRQ Mask $X X X X X X 1 1 1 1 1$ $X = Don't care$
	When position A is set to 1 and the corresponding bit in the status byte becomes 1, then RQS in the status byte and the SRQ line will be 1. Under the preceding condition a serial poll of the status byte will indicate that phase lock has been broken.
	When position B is set to 1 and the corresponding bit in the status byte becomes 1, then RQS in the status byte and the SRQ line will be 1. Under the preceding condition a serial poll of the status byte will indicate phase lock.
	When position C is set to 1 and the corresponding bit in the status byte becomes 1, then RQS in the status byte and the SRQ line will be 1. Under the preceding condition a serial poll of the status byte will indicate an invalid command has been received.
CA	CA1 = Capture active CA0 = Capture inactive
cs	Forces RQS and invalid command bit to zero in the status byte.
FT	Filter Bands 1 = FT1 7 = FT7 2 = FT2 8 = FT8 3 = FT3 9 = FT9 4 = FT4 10 = FT10 5 = FT5 11 = FT11 6 = FT6
LK	Phase Lock Range 1 Hz (1) = LK1 10 Hz (2) = LK2 100 Hz (3) = LK3 1 kHz (4) = LK4 10 kHz (5) = LK5
LP	When addressed to talk the Carrier Noise Test Set will send the current front panel settings in ASCII mnemonic string.
РН	Phase noise measurement
?ID	When addressed to talk the Carrier Noise Test Set will send an ASCII string which contains the model number of the instrument and software revision number.
RM	When addressed to talk the Carrier Noise Test Set will send a single byte which is the binary pattern of the SRQ.
RO	When addressed to talk the Carrier Noise Test Set will send the ASCII mnemonics of the options installed.

Table 3-5. Allowable HP-IB Address Codes

	Address Switches			Listen Address Char-	Talk Address Char-	Decimal Equiva- lent ¹	
A5	A4	A3	A2	A1	acter	acter	l ieut,
0	0	0	0	0	SP	@	0
0	0	0	0	1	!	Α	1
0	0	0	1	0	"	В	2
0	0	0	1	1	#	С	3
0	0	1	0	0	\$	D	4
0	0	1	0	1	%	E	5
0	0	1	1	0 :	& .	, F	6
0	0	1	1	1	4	G	7
0	1	0	0	0	(н	8
0	1	0	0	1)	I	9
0	1	0	1	0	*	J	10
0	1	0	1	1	+	К	11
0	1	1	0	0	,	L	12
0	1	1	0	1	-	М	13
0	1	1	1	0		N	14
0	1	1	1	1	1	0	15
1	0	0	0	0	0	Р	16
1	0	0	0	1	1	Q	17
1	0	0	1	0	2	R	18
1	0	0	1	1	3	S	19
1	0	1	0	Q.	4	ĭ	20
1	0	1	0	1	5	U	21
1	0	1	1	0	6	٧	22
1	0	1	1	1	7	w	23
1	1	0	0	0	8	Х	24
1	1	0	0	1	9	γ	25
1	1	0	1	0	;	Ž	26
٦	1	0	1	1	;	<u>[</u>	27
1	1	1	0	0	<	`\	28
1	1	1	0	1	=	j	29
1	1	1	1	0	>	_	30

¹Decimal characters and the five address switches relate to the last five bits of both talk and listen addresses.

 2 Factory-set address.

SECTION IV PERFORMANCE TESTS

4-1. INTRODUCTION

The procedures in this section test the instrument's electrical performance using the specifications of Table 1-1 as the performance standards. All tests can be performed without access to the interior of the instrument. A simpler operational test is included in Section III under Basic Functional Checks.

NOTE

A 30 minute warm-up period is required before any tests are performed.

Line voltage must be within +5% and -10% of nominal if the performance tests are to be considered valid.

4-2. EQUIPMENT REQUIRED

Equipment required for the performance tests is listed in Table 1-4, Recommended Test Equipment

in Section I. Any equipment that satisfies the critical specifications given in the table may be substituted for the recommended model(s).

4-3. TEST RECORD

Results of the performance tests may be tabulated on the Test Record at the end of the procedures. The Test Record lists all of the tested specifications and their acceptable limits. The results, recorded at incoming inspection, can be used for comparison in periodic maintenance and trouble-shooting and after repairs or adjustments.

4-4. CALIBRATION CYCLE

This instrument requires periodic verification of performance. Depending on the use and environmental conditions, the instrument should be checked using the following performance tests at least once every year.

PERFORMANCE TESTS

4-5. MEASUREMENT FREQUENCY RANGE, IF OUTPUT BANDWIDTH AND LEVEL PEFORMANCE TESTS

Specifications

Electrical Characteristics	Performance Limits	Cenditions
TEŞT SIGNAL		
Frequency Range ¹	10 MHz to 18 GHz	External low-pass filtering may be required for test signals <20 MHz and ±20 MHz around band centers.
Band Center	1.92 GHz	
Frequencies	4.48 GHz	
-	7.04 GHz	
	9.60 GHz	
	12.16 GHz	
	14.72 GHz	
	17.48 GHz	
IF OUTPUT		
Bandwidth	5 MHz to 1280 MHz	
Level	+7 dBm Minimum	

MEASUREMENT FREQUENCY RANGE, IF OUTPUT BANDWIDTH AND LEVEL PERFORMANCE TESTS (cont'd)

Description

This test verifies the frequency range of the Carrier Noise Test Set. A microwave test signal is input to the Carrier Noise Test Set for each BAND BAND; then the down converted IF OUTPUT is measured on a spectrum analyzer. The IF OUTPUT level is verified to be within specified limits for each band.

Equipment

Microwave Synthesized Source HP 8340A RF Spectrum Analyzer HP 8566A RF Synthesized Signal Generator ... HP 8662A

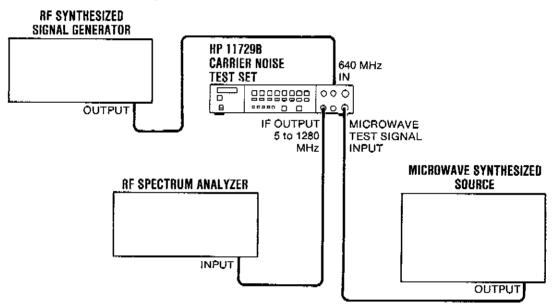


Figure 4-1. Measurement Frequency Range, IF Output Bandwidth and Level Test Setup

Procedure

- 1. Connect the test set up shown in Figure 4-1.
- 2. Set the Carrier Noise Test Set as follows:

Band Center Frequency 1.92 GHz

NOTE

If the unit does not contain a filter with this band center frequency, select the next available band listed in column 2 of Table 4-1.

3. Set the Microwave Synthesized Source (D.U.T.) as follows:

NOTE

The frequency corresponds to the microwave test signal shown in Table 4-1 for the band center frequency selected in step 2.

MEASUREMENT FREQUENCY RANGE, IF OUTPUT BANDWIDTH AND LEVEL PERFORMANCE TESTS (cont'd)

Procedure (cont'd)

4. Adjust the RF spectrum analyzer to display the 400 MHz IF OUTPUT.

NOTE

The IF OUTPUT will have the following signals:

- The IF signal (the microwave test signal minus the band center of the band range chosen.)
- IF harmonics
- And spurious signals

ALL HARMONICS OF THE IF SIGNAL AND ANY SPURIOUS SIGNALS CAN BE DISREGARDED.

- 5. Verify the IF OUTPUT level is within the specified limits in Table 4-1 and record the actual value.
- 6. Adjust the frequency of the D.U.T. to the next microwave test signal frequency listed in column one of Table 4-1. Select the corresponding band center frequency, on the Carrier Noise Test Set, listed in column two. Verify and record the IF OUTPUT power level. Repeat this process for each microwave test signal frequency listed in Table 4-1.
- 7. If the IF OUTPUT power level did not measure within specified limits, refer to the troubleshooting information on Service Sheet 1.

Table 4-1. IF Output Level

Microwave Test Signal	Test Signal Frequency	IF Output Fraquency (MHz)	IF O	
(GHz)	(GHz)	Typical	Minimum	Actual
2.32	1.92	400	+7	
4.88	4.48	400	. +7	
7.44	7.04	400	+7	
10.00	9.60	400	+7	
12.56	12.16	400	+7	
*14.740	14.72	20	+7	
*16.00	14.72	1280	+7	<u> </u>
*17.30	17.28	20	+7	
*18.56	17.28	1280	+7	

^{*}Because of the power requirements of the internal mixer, the upper and lower ends of the bands with center frequencies of 14.72 GHz and 17.28 GHz are verified to be within specified limits. The comb generator's output power is lowest at the higher 640 MHz harmonics.

4-6. RESIDUAL PHASE NOISE PERFORMANCE TEST (Using a test signal less than 1280 MHz)

Specification

Electrical Characterístics	Performance Limits	Conditions
Offset From		
Carrier	dBc/Hz	With a <1.28 GHz input
10 Hz	-115	signal
100 Hz	-126	
1 kHz	-135	
10 kHz	-142	
100 kHz	-151	
1 MHz	-156	

Description

NOTE

This test does not check the down converting circuitry in the Carrier Noise Test Set. However, the test requires less equipment than the residual phase noise test using a 10 GHz test signal.

The Carrier Noise Test Set's residual phase noise, for test signals <1280 MHz, is verified by connecting a signal generator's RF output to a power splitter. The output of the power splitter supplies the signals for both the MICROWAVE TEST SIGNAL INPUT and the 5 to 1280 MHz INPUT. Since the microwave test signal and the 5 to 1280 MHz signal are identical, the phase noise from the signal generator is canceled by the mixer/phase detector in the Carrier Noise Test Set. During the residual phase noise measurement the microwave test signal and the 5 to 1280 MHz signal must be in phase quadrature (that is,90 degrees out of phase). The difference in the lengths of cables A and B provide a time delay, so at a selected frequency on the signal generator the two inputs will have a 90 degree phase difference. The Carrier Noise Test Set's NOISE SPECTRUM OUTPUTS are measured on a low frequency spectrum analyzer and an RF spectrum analyzer. Correction factors are added and the residual phase noise is verified to be below the specified limit.

Equipment

RF Synthesized Signal Generator	HP 8662A (Option 003)
Low Frequency Spectrum Analyzer	HP 3582A
RF Spectrum Analyzer	HP 8566A
Power Meter	HP 436A
Power Sensor	HP 8482A
Power Splitter	HP 11667A
Coaxial Cable A (9 inches)	HP 10502A
Coaxial Cable B (24 inches)	
500 Termination	_

NOTE

The specified lengths of cable A and cable B in Figure 4-2 are critical for obtaining phase quadrature.

RESIDUAL PHASE NOISE PERFORMANCE TEST (Using a test signal less than 1280 MHz) (cont'd)

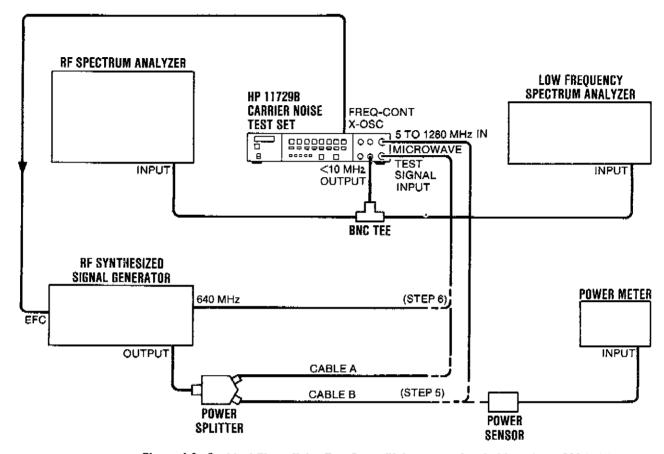


Figure 4-2. Residual Phase Noise Test Setup (Using a test signal of less than 1280 MHz)

Procedure Calibration

- 1. Connect the instruments as shown in Figure 4-2.
- 2. Turn on and warm up all instruments in the test setup for 30 minutes.
- 3. Set the RF synthesized signal generator (tunable reference) as follows:

4. Set the Carrier Noise Test Set as follows:

Band Range 0.01 to 1.28 GHz

Measurement Mode Phase Noise
Lock Bandwidth Factor Any setting

5. Measure the power of the tunable reference signal at the end of cable B and adjust the amplitude of the tunable reference until the power meter reads 0 dBm. Connect cable B to the 5 to 1280 MHz INPUT on the Carrier Noise Test Set.

RESIDUAL PHASE NOISE PERFORMANCE TEST (Using a test signal less than 1280 MHz) (cont'd)

Procedure (cont'd)

- 6. Disconnect cable A from the MICROWAVE TEST SIGNAL INPUT on the Carrier Noise Test Set and terminate cable A with a 50 ohm load. Connect the 640 MHz signal, from the tunable reference rear panel, to the MICROWAVE TEST SIGNAL INPUT, on the front panel, of the Carrier Noise Test Set.
- 7. Decrease the amplitude of the tunable reference by 50 dB.
- 8. Adjust the RF spectrum analyzer to display the 10 kHz beat note. (The beat note is the result of mixing the 640 MHz and 639.990 MHz signals). Set the 10 kHz beat note to a convenient reference point.
- 9. Adjust the low frequency spectrum analyzer to view the 10 kHz beat note. If the spectrum analyzer has selectable filters, select a flat top filter. If RMS averaging is available, select approximately 128 averages. RMS averaging smooths out the noise floor. If RMS averaging is not available the measurement should be made at an average level on the noise floor, not a peak or valley.
- 10. Set the peak of the 10 kHz beat note to a convenient reference point.
- 11. Disconnect the 640 MHz signal from the MICROWAVE TEST SIGNAL INPUT on the Carrier Noise Test Set. Disconnect the 50 ohm load from cable A and connect cable A to the MICROWAVE TEST SIGNAL INPUT.

Residual Phase Noise Measurement

- 12. Increase the amplitude of the tunable reference by 50 dB. Decrease the frequency of the tunable reference, in 1 MHz steps, until phase lock is acquired (green LED is illuminated on the phase lock display). The green LED should be illuminated when the tunable reference is around 425 MHz. For details on phase locking see Section III.
- 13. Adjust the RF spectrum analyzer to view the noise level at a 10 kHz offset. For the most accurate measurement use the smallest possible resolution bandwidth. Use some averaging to smooth out the noise level. Measure the noise level down from the reference point at 10 kHz. Measure an average noise level, do not measure on a peak or minimum noise level. Record this noise level (A) along with the spectrum analyzer's resolution bandwidth setting (B) below. Repeat the measurement and record for offsets of 100 kHz and 1 MHz.

Offset from carrier	Noise level (A) (relative to reference level) (dB)	Resolution Bandwidth (B) (Hz)
10 kHz		W W
100 kHz		
1 MHz	<u> </u>	

RESIDUAL PHASE NOISE PERFORMANCE TEST (Using a test signal less than 1280 MHz) (cont'd)

Procedure (cont'd)

14. On the low frequency spectrum analyzer, select a Hanning filter and the normalization to 1 Hz bandwidth (if the spectrum analyzer has these features available). If the spectrum analyzer does not have the normalization to a 1 Hz bandwidth this figure will have to be calculated later using the formula at the end of the test.

NOTE

Power line spurs are not specified for the Carrier Noise Test Set. Power line spurs will appear at power line frequencies and multiples of power line frequencies. Do not make a noise measurement on a spur; make the measurement on an average noise level.

15. Adjust the low frequency spectrum analyzer to view the noise level at a 10 Hz offset. For the most accurate measurement use the smallest possible resolution bandwidth. Use some averaging if required. Measure the noise level down from the reference point at 10 Hz. Measure an average noise level, do not measure on a peak or minimum noise level. Record this noise level (C) in the table below. If the measurement was not made in a 1 Hz resolution bandwidth, also record the spectrum analyzer's resolution bandwidth setting (D) below. Repeat the measurement and record for offsets of 100 Hz and 1 kHz.

Offset from carrier	Noise level (C) (relative to reference level) (dB)	Resolution Bandwidth (D) (Hz)
10 Hz		<u>.</u>
100 Hz		
1 kHz		

16. Calculate the Carrier Noise Test Set's residual phase noise at 10 kHz, 100 kHz and 1 MHz offsets from the carrier. Sum the measured noise level (A) and the 4 correction factors² as shown below. The normalization bandwidth factor is determined by putting the resolution bandwidth (B) into the equation below. Verify the residual phase noise level did not exceed the specified limit, as shown at the bottom of each column.

²For a complete explanation of the correction factors see Appendix C.

RESIDUAL PHASE NOISE PERFORMANCE TEST (Using a test signal less than 1280 MHz) (cont'd)

Procedure (cont'd)

, W. W.	10 kHz	100 kHz	1 MHz
Noise level = A (relative to reference level)	dB	dB	dB
Normalization to 1 Hz equivalent noise bandwidth ¹ -10 log ("B" x 1.2) =	dB	dB	dB
Calibration Attenuation (Step 7)	−50 dB	−50 dB	−50 dB
\mathcal{L}_{f} conversion factor	−6 dB	−6 dB	−6 dB
Correction for log amplifiers and peak detectors in analog spec-			
trum analyzers.	+2.5 dB	+2.5 dB	+2.5 dB
Total (dBc/Hz)	<-142	<-151	<-156

¹Refer to Application Note 150-4, HP 5952-1147, if additional information on calibration of spectrum analyzers for noise measurements is needed.

17. Calculate the Carrier Noise Test Set's residual phase noise at 10 Hz, 100 Hz and 1 kHz offsets from the carrier. Sum the measured noise level (C) and the 3 correction factors² as shown below. Do not add the normalization to 1 Hz equivalent noise bandwidth factor, when using a spectrum analyzer with normalization to a 1 Hz bandwidth. This correction factor is accounted for automatically. Verify the residual phase noise level did not exceed the specified limit as shown at the bottom of each column.

	10 Hz	100 Hz	1 kHz
Noise level = C (relative to reference level)	dB	dB	dB
Normalization to 1 Hz equivalent noise bandwidth ¹ -10 log ("B" x 1.2) =	dB	dB	dB
Calibration Attenuation (Step 7)	−50 dB	−50 dB	−50 dB
\mathcal{L}_t conversion factor	−6 dB	6 dB	6 dB
Total (dBc/Hz)	<-115	<-126	<-135

 $^{^{1}}$ Refer to Application Note 150-4, HP 5952-1147, if additional information on calibration of spectrum analyzers for noise measurements is needed.

NOTE

If an analog spectrum analyzer was used to measure the noise floor at 10 Hz, 100 Hz, and 1 kHz, add +2.5 dB to the totals above as a correction for the log amplifiers and peak detectors in the analog spectrum analyzer.

²For a complete explanation of the correction factors see Appendix C.

4-7. RESIDUAL PHASE NOISE PERFORMANCE TEST (Using a test signal of 10 GHz)

Specification

Electrical Characteristics	Portormanco I Imite						
Offset From							
Carrier	dBc/Hz	With a 10 GHz input					
10 Hz	-90	signal					
100 Hz	-105						
1 kHz	-115						
10 kHz	-127						
100 kHz	-137	ĺ					
1 MHz	-137						

Description

NOTE

This performance test is only necessary when the residual phase noise of the Carrier Noise Test Set is in question.

This test verifies the Carrier Noise Test Set's residual phase noise specifications using a 10 GHz test signal. A second Carrier Noise Test Set is required as a reference unit in this test. Since this test requires a second Carrier Noise Test Set, we recommend that the phase noise of the other instruments in the phase noise measuring system be checked before this test is performed.

During the residual phase noise measurement the microwave test signal and the 5 to 1280 MHz signal must be in phase quadrature (that is 90 degrees out of phase). One microwave synthesized source supplies the MICROWAVE TEST SIGNAL INPUT to both of the Carrier Noise Test Sets (device under test and reference). The IF OUTPUT of the reference Carrier Noise Test Set then supplies the 5-1280 MHz INPUT of the Carrier Noise Test Set device under test. The Carrier Noise Test Set's residual phase noise is measured on a low frequency spectrum analyzer and an RF spectrum analyzer. Correction factors are added and the residual phase noise is verified to be below the specified limit.

Equipment

 Carrier Noise Test Set
 HP 11729B

 (used as reference)
 HP 8662A (Option 003)

 RF Synthesized Signal Generator
 HP 8340A

 Low Frequency Spectrum Analyzer
 HP 3582A

 RF Spectrum Analyzer
 HP 8566A

 Power Meter
 HP 436A

 Power Sensor
 HP 8482A

 Power Splitter (quantity 2)
 HP 11667A

 Amplifier
 HP 8447E/F

 1 dB Step Attenuator (quantity 2)
 HP 355C

Procedure

Initial Instrument Settings

- 1. Connect the instruments as shown in Figure 4-3.
- 2. Turn on and warm-up the instruments for 30 minutes.
- 3. Set both step attenuators to maximum attenuation.

RESIDUAL PHASE NOISE PERFORMANCE TEST (Using a test signal of 10 GHz) (cont'd)

Procedure (cont'd)

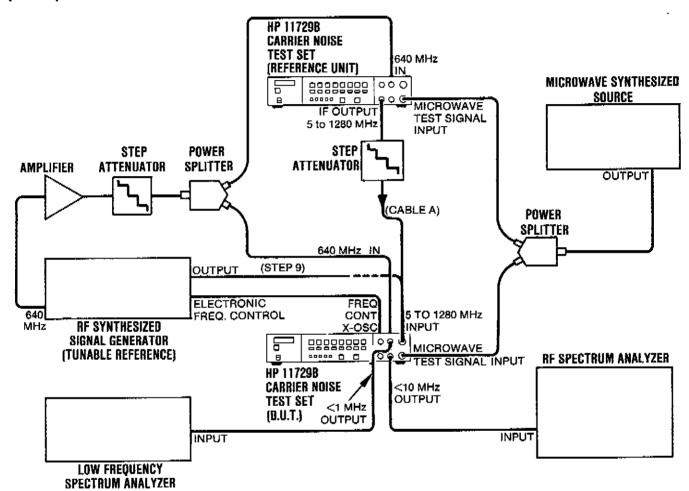


Figure 4-3. Residual Phase Noise Test Setup (Using a Test Signal of 10 GHz)

5. Set the RF Synthesized Signal Generator (tunable reference) as follows:

6. Set both Carrier Noise Test Sets as follows:

Band Center Frequency 9.6 GHz
Lock Bandwidth Factor 1
Measurement Mode...... Phase Noise

RESIDUAL PHASE NOISE PERFORMANCE TEST (Using a test signal of 10 GHz) (cont'd)

Procedure (cont'd)

Power Level Checks

- 7. Disconnect the cable which goes to the 640 MHz IN connector on the rear panel of the Carrier Noise Test Set device under test. Connect the power sensor to this cable. Adjust the step attenuator that is located before the power splitter, supplying the 640 MHz signal, such that the power meter reads between 0 dBm and +3 dBm. Reconnect the cable to the 640 MHz INPUT, on the rear panel, of Carrier Noise Test Set device under test.
- 8. Disconnect the end of cable A which is connected to the 5 to 1280 MHz INPUT on the Carrier Noise Test Set device under test. Connect the cable to a power sensor. Measure the IF OUTPUT power. Adjust the 1 dB step attenuator located after the IF OUTPUT of the reference Carrier Noise Test Set until the power meter reads —1 dBm to 0 dBm. Record the exact power meter reading below.

Reference Carrier Noise Test Set IF OUTPUT power = _____dBm

Spectrum Analyzer Calibration

- 9. Disconnect cable A from the power sensor. Connect the cable from the tunable reference output to the power sensor. Adjust the amplitude of the tunable reference until the power meter reads the power level recorded in step 8. Connect the tunable reference to the 5 to 1280 MHz INPUT on the Carrier Noise Test Set device under test.
- 10. Decrease the amplitude of the tunable reference by 50 dB. Adjust the RF spectrum analyzer to display the approximately 10 kHz beat note. (The beat note is the result of mixing the 400 MHz IF (MICROWAVE TEST SIGNAL INPUT minus the band center of the BAND RANGE chosen) and the 399.990 MHz tunable reference signal). Set the peak of the 10 kHz beat note to a convenient reference point.
- 11. Adjust the low frequency spectrum analyzer to view the approximately 10 kHz beat note. If the spectrum analyzer has selectable filters, select a flat top filter. If RMS averaging is available, select approximately 128 averages. RMS averaging smooths out the noise floor. If RMS averaging is not available the measurement should be made at an average level on the noise floor, not on a peak or valley.
- 12. Set the peak of the beat note to a convenient reference point.

Residual Phase Noise Measurement

- 13. Disconnect the tunable reference from the 5 to 1280 MHz INPUT on the Carrier Noise Test Set device under test. Reconnect cable A to the 5 to 1280 MHz INPUT on the Carrier Noise Test Set device under test.
- 14. Decrease the frequency of the Microwave Synthesized Source in 1 MHz steps, until the Carrier Noise Test Set device under test indicates phase quadrature (green LED is illuminated on the phase lock display.) Details of phase locking are found in Section III.

RESIDUAL PHASE NOISE PERFORMANCE TEST (Using a test signal of 10 GHz) (cont'd)

Procedure (cont'd)

15. Adjust the RF spectrum analyzer to view the residual phase noise level at a 10 kHz offset from the carrier. For the most accurate measurement, use the smallest possible resolution bandwidth. Use averaging if required. Measure the residual phase noise level down from the reference point. Measure on an average phase noise level, do not measure on a peak or minimum phase noise level. Record the phase noise level (A) along with the measurement resolution bandwidth (B) below. Repeat this measurement for offsets of 100 kHz and 1 MHz.

Offset from carrier	Noise level (A) (relative to reference level) (dB)	Resolution Bandwidth (B) (Hz)
10 kHz		
100 kHz		
1 MHz		

- 16. On the low frequency spectrum analyzer, select a Hanning filter and the normalization to a 1 Hz bandwidth (if these features are available). If the spectrum analyzer does not have the feature for normalization to a 1 Hz bandwidth this figure will have to be calculated later using the formula at the end of the test.
- 17. Adjust the low frequency spectrum analyzer to view the residual phase noise level at 10 Hz. Measure the residual phase noise level down from the reference point. Measure on an average phase noise level; do not measure on a peak or minimum level.

NOTE

Power line spurs are not specified for the Carrier Noise Test Set. Power line spurs will appear at power line frequencies and multiples of power line frequencies. Do not make a phase noise measurement on a spur, make the measurement on an average noise level.

18. Record the phase noise level (C) below. If the measurement was not made in a 1 Hz resolution bandwidth, also record the measurement resolution bandwidth (D). Repeat this measurement at 100 Hz and 1 kHz offsets.

Offset from carrier	Noise level (C) (relative to reference level) (dB)	Resolution Bandwidth (D) (Hz)
10 Hz		
100 Hz		
1 kHz		

19. Calculate the residual phase noise of the Carrier Noise Test Set at 10 kHz, 100 kHz and 1 MHz offsets from the carrier. Sum the measured phase noise level (A) and the 4 correction factors² listed below. The normalization bandwidth factor is determined by putting the resolution bandwidth (B) into the equation below. Verify the residual phase noise level did not exceed the specified limit as shown at the bottom of each column.

²For a complete explanation of the correction factors see Appendix C.

RESIDUAL PHASE NOISE PERFORMANCE TEST (Using a test signal of 10 GHz) (cont'd)

Procedure (cont'd)

	10 kHz	100 kHz	1 MHz
Noise level = A (relative to reference level)	dB	dB	dB
Normalization to 1 Hz equivalent noise bandwidth ¹ $-10 \log ("B" \times 1.2) =$	dB	dB	dB
Calibration Attenuation (Step 10)	−50 dB	−50 dB	−50 dB
\mathcal{L}_{f} conversion factor	−6 dB	−6 dB	−6 dB
Correction for log amplifiers and peak detectors in analog spectrum analyzer	+2.5 dB	+2.5 dB	+2.5 dB
Total (dBc/Hz)	<-127	<-137	<-137

¹Refer to Application Note 150-4, HP 5952-1147, if additional information on calibration of spectrum analyzers for noise measurements is needed.

20. Calculate the residual phase noise level of the Carrier Noise Test Set at 10 Hz, 100 Hz and 1 kHz offsets from the carrier. Sum the measured phase noise level (C) and the 3 correction factors² below. Do not add the normalization to a 1 Hz equivalent noise bandwidth factor, when the spectrum analyzer accounts for this factor automatically. Verify the residual phase noise level does not exceed the specified limit shown at the bottom of each column.

	10 Hz	100 Hz	1 kHz
Noise level = C (relative to reference level)	dB	dB	dB
Normalization to 1 Hz equivalent noise bandwidth ¹ $-10 \log ("D" \times 1.2) =$	dB	dB	dB
Calibration Attenuation (Step 10)	dB	dB	-50 dB
\mathcal{L}_{f} conversion factor	−6 dB	−6 dB	−6 dB
Total (dBc/Hz)	<-90	<-105	<-115

¹Refer to Application Note 150-4, HP 5952-1147, if additional information on calibration of spectrum analyzers for noise measurements is needed.

NOTE

If an analog spectrum analyzer was used to measure the noise floor at 10~Hz, 100~Hz and 1~kHz add +2.5~dB to the totals above. This is the correction factor for the log amplifiers and peak detectors in the analog spectrum analyzer.

²For a complete explanation of the correction factors see Appendix C.

4-8. AM NOISE FLOOR PERFORMANCE TEST

Specification

Electrical Characteristics	Performance Limits	Conditions
AM Noise Floor Offset from Carrier	AM Noise (dBc/Hz)	At +10 dBm input level
1 kHz 10 kHz 100 kHz 1 MHz	-138 -145 -155 -160	

Description

NOTE

This test, as written, is only a partial verification of the AM Noise floor specification. The test only verifies the AM noise floor for frequency offsets of 100kHz and higher. From 1Hz to 100kHz the recommended low noise oscillator's AM noise floor is higher than the AM noise floor of the Carrier Noise Test Set. For a complete verification, an oscillator with lower AM noise specifications than the Carrier Noise Test Set would be needed.

The AM noise floor is measured at two offsets from the carrier (100 kHz and 1 MHz) to verify AM noise detection is performing within limits. A signal generator is used for calibrating the spectrum analyzer. A low noise oscillator is connected to the MICRO-WAVE TEST SIGNAL INPUT for the AM noise measurement. The AM noise floor is observed from the <10 MHz OUTPUT on a spectrum analyzer.

Equipment

Microwave Synthesized Source (with AM modulation)	HP 8340A
Spectrum Analyzer	HP 8566A
Function Generator	HP 3312A
Coaxial to waveguide adapter	HP X281A
*Isolator	HP 0955-0178
Power Supply	HP 6214B
Power Meter	HP 436A
Power Sensor	HP 8481A
Low Noise Oscillator	MA 86651A

^{*}The isolator stabilizes load effects on the AM noise floor. When an isolator is not available an attenuator pad may be used. The attenuator pad may be used only if the output power of the oscillator is +10 dBm with the attenuator pad in place. If the measured power is +10 dBm or lower an isolator will have to be used. (See step 5 of the test procedure)

Procedure

Calibration

- 1. Connect the equipment as shown in Figure 4-4.
- 2. Connect +10 Vdc from the power supply to the low noise oscillator. Warm up the oscillator for 30 minutes.

AM NOISE FLOOR PERFORMANCE TEST (cont'd)

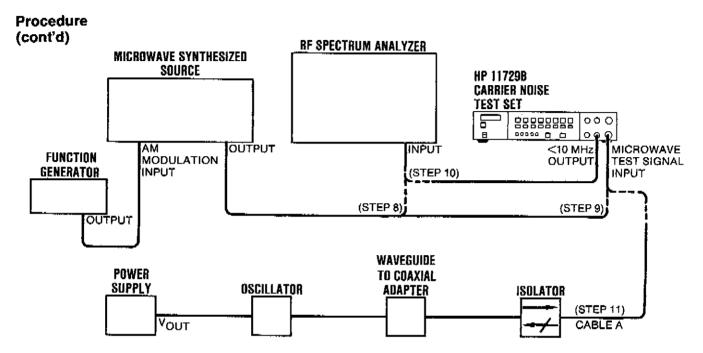


Figure 4-4. AM Noise Floor Test Setup

3. Set the Microwave Synthesized Source as follows:

Frequency	 1 GHz
AM modulation	 50%

4. Set the function generator as follows:

Function	٠.	 	. ,		 			 		sinewave
Frequency		 			 			 		100 kHz

5. Set the Carrier Noise Test Set as follows:

Measurement Mode	ΑM
All other controls Any set	ing

6. Measure the power level of the low noise oscillator at the end of cable A (the end that connects to the MICROWAVE TEST SIGNAL INPUT). The level should be approximately +10 dBm. Connect an attenuator pad at the oscillator's output if the power level is above +10 dBm. The value of the attenuator pad selected should bring the measured power level to +10 dBm. Disconnect cable A from the power sensor.

Record the power level below.

Low noise oscillator power level _____ dBm

AM NOISE FLOOR PERFORMANCE TEST (cont'd)

Procedure (cont'd)

NOTE

The AM noise floor of the Carrier Noise Test Set is specified for a +10~dBm input level. Using an input signal lower than +10~dBm will increase the AM noise floor. The noise floor will increase by the amount in dB that the input signal was lowered from +10~dBm. As an example: a +7~dBm input will raise the AM noise floor by +3~dB.

Because our specifications are higher than typical measured values, an input signal of +5 dBm minimum will typically still measure within specifications.

- 7. Connect the end of the cable from the Microwave Synthesized Source to the power sensor. Adjust the amplitude of the Microwave Synthesized Source until the power meter reads the power level recorded in step 6.
- 8. Turn the Microwave Synthesized Source to external AM modulation. Connect the Microwave Synthesized Source to the spectrum analyzer. Be sure the input to the spectrum analyzer is 50 ohms.
- 9. Adjust the amplitude on the function generator so the sidebands displayed on the spectrum analyzer are -40 dBc. Disconnect the Microwave Synthesized Source from the spectrum analyzer and connect it to the Carrier Noise Test Set MICROWAVE TEST SIGNAL INPUT.
- 10. Connect the <10 MHz OUTPUT from the Carrier Noise Test Set to the spectrum analyzer. Adjust the spectrum analyzer to view the 100 kHz sidebands on the 1 GHz signal. Set the peak of the 100 kHz signal to a convenient reference point.

AM Noise Floor Measurement

11. Disconnect the Microwave Synthesized Source from the MICROWAVE TEST SIGNAL INPUT. Connect the output of the low noise oscillator to the MICROWAVE TEST SIGNAL INPUT.

NOTE

The oscillator signal should come directly from the resonator with no amplification stage in between. Under this condition, it is likely that the AM noise coming from the oscillator is less than or equal to $-155\,\mathrm{dBc/Hz}$ at a 100 kHz offset.

12. Measure the noise level down from the reference point at a 100 kHz offset. Record the AM noise level (A) and resolution bandwidth (B) below. Measure the AM noise floor at a 1 MHz offset. Record this level with the corresponding resolution bandwidth below.

Offset from carrier	Noise level (A) (relative to reference level) (dB)	Resolution Bandwidth (B) (Hz)
100 kHz		
1 MHz	0.0.00	

PERFORMANCE TESTS

AM NOISE FLOOR PERFORMANCE TEST (cont'd)

Procedure (cont'd)

13. Calculate the AM noise floor by summing the measured AM noise level (A) and the 3 correction factors² shown below. The normalization bandwidth factor is determined by putting the resolution bandwidth (B) into the equation below. Verify the AM noise floor did not exceed the specified limit as shown at the bottom of each column.

	100 kHz	1 MHz
Noise level = A (relative to reference level)	dB	dB
Normalization to 1 Hz equivalent noise bandwidth ¹ $-10 \log ("B" \times 1.2) =$	dB	dB
Calibration Attenuation (Step 8)	−40 dB	-40 dB
Correction for log amplifiers and peak detectors in analog spectrum analyzer	+2.5 dB	+2.5 dB
Total (dBc/Hz)	<-155	<-160

¹Refer to Application Note 150-4, HP 5952-1147, if additional information on calibration of spectrum analyzers for noise measurements is needed.

 $^{^{2}% \}left(1\right) =0$ For a complete explanation of the correction factors see Appendix C.

Table 4-2. Performance Test Record

Hewlett-Packard Company Model HP 11729B Carrier Noise Test Set	Test by
Serial Number	Date

				Results			
Para No.		Test Description		Min.	Actual	Max.	
4-5.	MEASUREMENT FRE BANDWIDTH AND LE IF Output Pow	VEL PERFORMANCE					
	Mirowave Signal (GH2)	Band Center (GHz)	IF Output Freq. (MHz) Typ.				
	2,32 4,88 7,44 10,00 12,56 14,740 16,00 17,30 18,56	1.92 4.48 7.04 9.60 12.16 14.72 14.72 17.28	400 400 400 400 400 20 1280 20 1280	+7 dBm +7 dBm +7 dBm +7 dBm +7 dBm +7 dBm +7 dBm +7 dBm +7 dBm			
4-6.	RESIDUAL PHASE NO <1280 MHz Test Sig Offset From Th	nal) le Carrier 10 Hz 100 Hz 1 kHz 10 kHz 100 kHz 100 kHz 1 MHz			(dBc/Hz)	(dBc/Hz) 115 126 185 142 151 156	
4-7.	RESIDUAL PHASE NO Signal) Offset From Th		(Using a 10 GHz Test		(dBc/Hz)	(dBc/Hz) -90 -105 -115 -127 -137 -137	
4-8.	AM NOISE PERFORM Offset From Th				(dBe/Hz)	(dBc/Hz) -155 -160	

SECTION V ADJUSTMENTS

5-1. INTRODUCTION

This section contains adjustments and checks that ensure peak performance of the Carrier Noise Test Set. The instrument should be readjusted after repair or after failure to pass a performance test. Allow a 30 minute warm-up period prior to performing the adjustments unless noted otherwise.

To determine which performance tests and adjustments to perform after a repair, refer to the paragraph entitled Related Adjustments. After the repair and/or adjustment, performance tests are usually required to verify performance.

5-2. SAFETY CONSIDERATIONS

This section contains information, cautions, and warnings which must be followed for your protection and to avoid damage to the equipment.

WARNINGS

Adjustments described in this section are performed with power supplied to the instrument and with protective covers removed. Maintenance should be performed only by service trained personnel who are aware of the hazard involved (for example, fire and electrical shock). Where maintenance can be performed without power applied, the power should be removed.

Before the instrument is switched on, all protective earth terminals, extension cords, autotransformers and devices connected to it should be connected to a protective earth grounded socket. Any interruption of the protective earth grounding will cause a potential shock hazard that could result in personal injury.

Whenever it is likely that the protection has been impaired, the instrument must be made inoperative and be secured against any unintended operation.

Only 250V normal blow fuses with the required rated current should be used.

Do not use repaired fuses or short circuited fuseholders. To do so could cause a shock or fire hazard.

5-3. EQUIPMENT REQUIRED

Each adjustment procedure contains a list of required test equipment. The test equipment is identified by callouts in the test setup diagrams where included.

If substitutions must be made for the specified test equipment, refer to Table 1-4 in Section I for the minimum specifications. It is important that the test equipment meet the critical specifications listed in the table if the Carrier Noise Test Set is to meet its performance requirements.

5-4. FACTORY-SELECTED COMPONENTS

Factory selected components are identified on the schematics and parts list by an asterisk (*) which follows the reference designator. The normal value or range of the components is shown. The manual change sheets may provide updated information pertaining to the selected components. Table 5-1 lists the reference designator, the criteria used for selecting a particular value, the normal range and the service sheet where the component part is shown.

5-5. RELATED ADJUSTMENTS

The procedures in this section can be performed in any order. However, it is advisable to check the power supply voltages first.

NOTE

The steps within a procedure must be performed in the order listed.

Table 5-1. Factory Selected Components

Reference	Service	Range of	Process of
Designator	Sheet	Values	Selection
AT1	1	0 dB to 2 dB	Refer to adjust- ment 5-9

5-6. POWER SUPPLY ADJUSTMENT

Reference

Service Sheet 7

Description

The ± 5.0 Vdc power supply is adjusted for ± 5.000 Vdc ± 0.025 Vdc at the 5V Test Point A7TP3 using a digital multimeter.

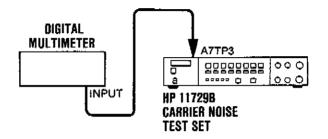


Figure 5-1. +5.0 Vdc Power Supply Adjustment Setup

Equipment

Procedure

- 1. Take off the top cover of the Carrier Noise Test Set. Locate the 5V Test Point A7TP3 on the power supply board. Turn on the Carrier Noise Test Set.
- 2. Connect the digital multimeter to the 5V Test Point A7TP3. Adjust A7R10 (\pm 5V ADJ) for a reading of \pm 5.000 Vdc \pm 0.025 Vdc on the digital multimeter.

5-7. PHASE LOCK INDICATOR ADJUSTMENT

Reference

Service Sheet 3

Description

The Phase Lock Board is adjusted to calibrate the lock and unlock positions on the Phase Lock Indicator. If the Phase Lock Indicator does not agree with the status byte, sent out over HP-IB, the Phase Lock Board may need adjustment. The adjustments for the Phase Lock Indicator only need to be made in one BAND RANGE. The Phase Lock Board is also adjusted to compensate for dc offsets in the switchable gain amplifier and integrator.

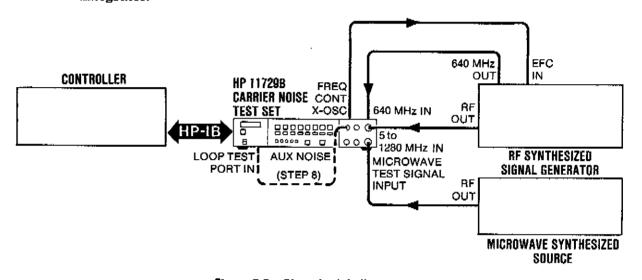


Figure 5-2. Phase Lock Indicator Adjustment Setup

Equipment

RF Synthesized Signal Generator.	HP 8662A (Option 003)
Microwave Synthesized Source	HP 8340A
Computer Controller	HP 85B
Digital Multimeter	HP 3465A
SMC to BNC adapter	HP 1250-0831
BNC to alligator clips	HP 8120-1292

Procedure

- 1. Connect the equipment as shown in Figure 5-2.
- 2. Turn on and warm up all instruments for 30 minutes before doing the following adjustments.
- 3. Set the Carrier Noise Test Set as follows:

Lock Bandwidth Factor	100
Measurement Mode	Phase Noise
Band Range	8 32 to 10 88 GHz

NOTE

If this BAND RANGE is not included in the Carrier Noise Test Set, select an available range.

PHASE LOCK INDICATOR ADJUSTMENT (cont'd)

Procedure (cont'd)

4. Set the Microwave Synthesized Source (D.U.T.) as follows:

NOTE

The test signal is tuned 400 MHz above the BAND CENTER frequency of the BAND RANGE chosen.

5. Set the RF synthesized signal generator (tunable reference) as follows:

NOTE

The difference in frequency between the IF signal (D.U.T. frequency minus the BAND CENTER frequency of the BAND RANGE chosen) and the tunable reference is called a beat note. By connecting the <1 MHz or <10 MHz NOISE SPECTRUM OUTPUT to a spectrum analyzer the approximately 1 kHz beat note can be viewed.

- 6. Remove the top cover of the Carrier Noise Test Set. Disconnect the cable to PHASE LOCK IN (A7J9) on the Power Supply Board. Connect an SMC to BNC adapter (HP 1250-0831) to PHASE LOCK IN (A7J9). Attach a BNC to alligator clip (HP 8120-1292) to the adapter that you just connected to PHASE LOCK IN (A7J9). Short the alligator clips to simulate a perfect phase lock.
- 7. Adjust DSP CNTR (A5R37), on the Phase Lock Board, to center the Phase Lock Indicator. A green LED should be displayed in the center of the indicator.

- 8. Connect the AUX NOISE OUTPUT, on the front panel, to LOOP TEST PORT IN on the rear panel. Two red LEDs should appear, one on either side of the center green LED. If the red LEDs are not illuminated adjust DSP DEV (A5R35) on the Phase Lock Board until the two red LEDs are visible. For optimum resolution no more than two red LEDs should be illuminated.
 - Fine adjust DSP CNTR (A5R37) until the red LEDs have equal intensity on both sides of the center green LED.
- 9. Remove the cable to the LOOP TEST PORT IN connector. Remove the short from the PHASE LOCK IN connector on the Power Supply Board and reconnect the original cable (W6) to the PHASE LOCK IN connector.
- 10. Set the LOCK BANDWIDTH FACTOR, on the front panel, to 1.
- 11. Adjust DSP DEV (A5R35), on the Phase Lock Board, until the Phase Lock Indicator displays four (4) red LEDs to either side of center. The indicator may have to be

PHASE LOCK INDICATOR ADJUSTMENT (cont'd)

Procedure (cont'd)

shaded to view the LEDs. The Phase Lock Indicator now displays maximum display deviation. The D.U.T. and the tunable reference must not phase lock during the adjustment. If they phase lock while making the adjustment, disconnect the FREQ-CONT X-OSC cable, on the rear panel of the Carrier Noise Test Set, then reconnect.

12. Increase the frequency of the tunable reference by 5 MHz to unlock the display. A red LED should be illuminated to the left of the center green LED. If the red LED is not illuminated adjust UNLK DSP (A5R5) until the red LED lights.

- 13. Decrease the frequency of the tunable reference by 5.001 MHz.
- 14. Be sure the LOCK BANDWIDTH FACTOR is set to 1.
- 15. Press then release CAPTURE to enable phase lock. If phase lock is aquired go to step 16. If phase lock was not aquired proceed as follows:

The tunable reference must be tuned closer in frequency to the IF frequency ($f_{IF} = f_{d.u.t.} - f_{band\ center\ frequency}$). Press CAPTURE while tuning the tunable reference in 1 kHz steps. Watch the phase lock indicator on the Carrier Noise Test Set. When the LED's on the indicator all light up, reduce the resolution of the tunable reference by a factor of 10.

NOTE

Connect the spectrum analyzer to the <10 MHz OUTPUT, on the Carrier Noise Test Set, if difficulties occur in determining the direction to tune the tunable reference to acquire phase lock.

The signals displayed on the spectrum analyzer represent the frequency difference between the two inputs to an internal mixer/phase detector in the Carrier Noise Test Set. The signals will decrease in frequency to dc when tuning towards phase lock and increase in frequency when tuning away from phase lock.

Press CAPTURE and tune in this reduced resolution. Watch the red LEDS on the Carrier Noise Test Set phase lock indicator step through one side of the display — to the green bar — then to the other side of the display. Again reduce the resolution on the tunable reference by a factor of 10. Tune in this finer resolution until the green LED is illuminated. When the green LED is illuminated release CAPTURE.

16. Hold CAPTURE in and increase the tunable reference in 10 Hz steps until the loop becomes unlocked. Watch the phase lock indicator. The red LEDs should fully light one at a time and move to the right. When the last LED is illuminated and you tune further the entire indicator should dimly light.

With CAPTURE pressed decrease the tunable reference in 10 Hz steps. The dimly illuminated indicator should change back to the red LEDs one at a time fully illuminated and moving to the left. When the last LED on the left is illuminated and you tune further, the entire indicator will dimly light.

PHASE LOCK INDICATOR ADJUSTMENT (cont'd)

Procedure (cont'd)

- 17. When the last LED on the left or right lights and the tunable reference is increased or decreased further, the indicator should immediately dimly light. If the indicator goes blank adjust DSP DEV (A5R35), on the Phase Lock Board, so the last LED on the right or left is illuminated. Tune further and the entire indicator should dimly light.
- 18. If DSP DEV did not need adjustment go to step 19. If DSP DEV was adjusted repeat steps 12—17 because the adjustments UNLK DSP and DSP DEV are interactive.
- 19. Set the LOCK BANDWIDTH FACTOR, on the front panel, to 100.
- 20. Press and hold CAPTURE while tuning the tunable reference using a 100 Hz resolution. Tune until the tunable reference and D.U.T. are phase locked (green LED). Release CAPTURE. If the display changes to a red LED adjust OFF AD (A5R34), on the Phase Lock Board, to center the display (green LED). If the display remains centered do not adjust OFF AD.
- 21. Set the LOCK BANDWIDTH FACTOR to 10. If the center green LED stays illuminated go to step 22. If the center green LED doesn't stay illuminated repeat step 20 with a 10 Hz resolution.
- 22. Set the LOCK BANDWIDTH FACTOR to 1. The center green LED should stay illuminated. If the center green LED doesn't stay illuminated repeat step 20 with a 1 Hz resolution.
- 23. Use the following procedure to verify if the adjustment for UNLK DSP is calibrated correctly:

Enter Program 1 into a computer or controller that runs basic. Insert the correct select code and HP-IB address, for your Carrier Noise Test Set, into the SPOLL function. The HP-IB address of the Carrier Noise Test Set is factory preset to 06. The user can select the HP-IB address by changing the position of the HP-IB address switches on the rear panel of the Carrier Noise Test Set. (Refer to Section II paragraph 2-7, HP-IB Address Selection, for further information.)

PROGRAM 1

10 A = SPOLL(###)

(### = Current Carrier Noise Test Set select

20 DISP A

code and address.)

30 GOTO 10

Example: 706

7=Select code 06=Address

This program monitors the status byte of the Carrier Noise Test Set and displays the equivalent decimal value. The status of the phase lock detector sent out over HP-IB should agree with the phase lock indicator on the front panel. Table 5-2 defines the status bits and their decimal equivalents for the two phase lock conditions.

PHASE LOCK IND!CATOR ADJUSTMENT (cont'd)

Procedure (cont'd)

Table 5-2. Phase Lock and Unlock Status Bits

Phase	Status-Bits-Binary						Output		
Condition	D108	DIQ7	0106	D105	0104	0103	0102	DIQ1	Decimal*
unlocked	0	0	0	0	0	1	0	0	4
locked (green bar)	0	0	0	0	0	0	1	0	2

- 24. Set the Carrier Noise Test Set to the phase lock condition (green LED is illuminated on the front panel phase lock indicator).
- 25. Run Program 1 and compare the number displayed on the computer to the phase condition of the phase lock indicator on the Carrier Noise Test Set. A decimal 2 is displayed when in the phase lock condition.
- 26. Increase the frequency of the tunable reference by 1 MHz. Verify that the unlocked condition (red LED adjacent to the left of the green LED) is detected by the microprocessor. A decimal 4 should be displayed on the computer.

If the number (2 or 4) displayed on the computer does not correspond to the phase lock condition, displayed on the front panel phase lock indicator, perform steps 12—18 again. Perform steps 23—26 to verify the adjustments.

5-8. OPTION SWITCH ADJUSTMENT

Reference

Service Sheet 6

NOTE

If a filter is added to the Carrier Noise Test Set the inputs to the Option Switch (S1), on the microprocessor board, need to be changed.

Description

The five (5) input switch (S1), on the microprocessor board, defines the options installed in the Carrier Noise Test Set. The switch should only be adjusted when the options are changed or the switch is being replaced.

Procedure

- 1. Take off the bottom cover of the Carrier Noise Test Set
- 2. Unscrew the three Pozidriv screws, on microprocessor board (A9), to access the component side of the board.
- 3. Locate the five (5) input switch (S1) near the front panel. Table 5-3 defines the switch positions. The 0 and 1 logic levels are etched on the board on either side of the switch.

Table 5-3. Definition of Option Switch S1

Switch Input Logic Levels					Total Number of Bands in the Carrier Noise Test Set
#5	#4	#3	#2	#1	
X	0	0	0	0	1
\mathbf{x}	0	0	0	1	1
X	0	0	1	0	2
Х	0	0	1	1	3
X	0	1	0	0	4
X	0	1	0	1	5
X	0	1	1	0	6
X	0	1	1	1	7
X	1	0	0	0	8
X	1	0	0	1	9 (exceeds capacity)
X	1	0	1	0	10 (exceeds capacity)
X	1	0	1	1	11 (exceeds capacity)
X	1	1	0	0	1
X	1	1	0	1	1
X	1	1	1	0	1
X	1	1	1	1	1
0	x	X	x	x	AM is not installed
I	X	X	X	X	AM is installed
X	= Do	n't ca	ıre		

4. If a filter is added to the instrument, switch S1 to the corresponding logic levels for the total number of filters in the Carrier Noise Test Set.

OPTION SWITCH ADJUSTMENT (cont'd)

Procedure (cont'd)

- 5. Verify that the microprocessor recognizes the change by pressing the BAND RANGE button of the newly installed filter. The filter switch will click on and the LED on the BAND RANGE button will light if the microprocessor has acknowledged the new filter.
- 6. Reinstall the screws on the microprocessor board and replace the bottom cover.

5-9. ATTENUATOR AT1 SELECTION

Reference

Service Sheet 1

Description

The attenuator (AT1) is a factory selected component. The purpose of the attenuator is to guarantee a power level of +26.5 dBm to +28.0 dBm to the comb generator for optimum operation. These procedures guide you in the selection of the attenuator and give installation instructions.

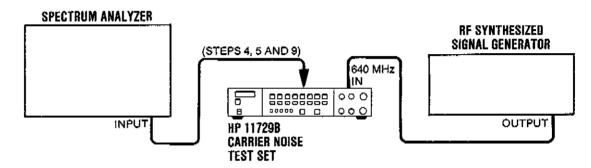


Figure 5-3. Attenuator Selection Test Setup

Equipment

Procedure

- 1. Take off the top cover and the left side panel (as viewed from the front) of the Carrier Noise Test Set.
- 2. Loosen the four (4) screws, on the left side of the instrument, that hold the power amplifier (A11) in place. The power amplifier should now slide when the cables are loosened.
- 3. Locate the comb generator G1. Loosen the output connector of the comb generator. Disconnect W24 from the isolator (AT2), then connect the 20 dB attenuator to the isolator. Connect a low loss microwave cable (semirigid or Gortex) from the attenuator to the spectrum analyzer. Tighten all connectors.
- 4. Measure the power level of each 640 MHz harmonic (up to 17.28 GHz), out of the comb generator G1, with the spectrum analyzer.

If the power level of any comb line is less than -16 dBm continue to step 5.

If the power level of each comb line is -16 dBm or greater the attenuator does not need to be replaced, therefore do not continue with these procedures.

5. Remove the attenuator from the isolator. Reconnect the isolator to W24. Connect the output of the power amplifier assembly (A11) to the 20 dB attenuator. Measure the power level of the 640 MHz signal with the spectrum analyzer. Record the power level below.

Power out of Power Amplifier _____dBm

ATTENUATOR AT1 SELECTION (cont'd)

Procedure (cont'd)

If the power level is below +26.5 dBm refer to the troubleshooting information on Service Sheet 1. (The power, out of the power amplifier assembly (A11), is too low for the comb generator to operate.)

If the power level is ± 26.5 dBm or above, continue with the procedures to replace the attenuator. Disconnect the 20 dB attenuator from the power amplifier.

6. Disconnect the attenuator (AT1) from the comb generator G1. If your instrument does not have an attenuator go to step 7.

Identify the value of the attenuator by locating the 4401 or 4402 number that is engraved on the attenuator.

4401 is a 1 dB attenuator

4402 is a 2 dB attenuator

7. Use the table below to select the attenuator that is required for the output power you recorded in step 5.

Power out of Power Amplifier	Attenuator Required		
,	Value	HP part number	
+26.5 dBm to +28.0 dBm +28.0 dBm to +29.0 dBm >+29 dBm	No attenuator 1 dB 2 dB	No part required HP 0955-0198 HP 0955-0163	

- 8. Obtain the attenuator required. Connect the attenuator to the power amplifier (A11) and to the comb generator (G1). If no attenuator is required, connect the power amplifier directly to the comb generator.
- 9. Measure the output of the comb generator with the spectrum analyzer as in steps 3 and 4. The power level of the harmonics should be -16 dBm or greater.

NOTE

If the power level is correct going into the comb generator but incorrect at the output of the comb generator, refer to the troubleshooting information for the comb generator on Service Sheet 1.

SECTION VI REPLACEABLE PARTS

6-1. INTRODUCTION

This section contains information for ordering parts. Table 6-1 lists abbreviations used in the parts list and throughout the manual. Table 6-2 lists all replaceable parts in reference designator order. Table 6-3 contains the names and addresses that correspond to the manufacturers' code numbers.

6-2. ABBREVIATIONS

Table 6-1 lists abbreviations used in the parts list, schematics, and throughout the manual. In some cases, two forms of the abbreviation are used; one all in capital letters, and one partial or no capitals. This occurs because the abbreviations in the parts list are always all capitals. However, in the schematics and other parts of the manual, other abbreviation forms are used with both lower case and upper case letters.

6-3. REPLACEABLE PARTS LIST

Table 6-1 is the list of replaceable parts and is organized as follows:

- a. Electrical assemblies and their components in alpha-numerical order by reference designation.
- b. Chassis-mounted parts in alpha-numerical order by reference designation.
 - c. Miscellaneous parts.

The information given for each part consists of the following:

- a. The Hewlett-Packard part number.
- b. Part number check digit (CD).
- c. The total quantity (Qty) in the instrument, which appears only at the first listing of a particular part number.
 - d. The description of the part.
- e. A typical manufacturer of the part in a fivedigit code.
 - f. The manufacturer's number for the part.

6-4. FACTORY SELECTED PARTS (*)

Parts marked with an asterisk (*) are factory selected parts. The value listed in the parts list is the nominal value. Refer to Sections V for information on determining what value to use for replacement.

6-5. PARTS LIST BACKDATING (†)

Parts marked with a dagger (†) are different in instruments with serial number prefixes lower than the one that this manual applies to directly. Table 7-1 lists the backdating changes by serial number prefix. The backdating changes are contained in Section VII.

6-6. PARTS LIST UPDATING (Change Sheet)

Production changes to instruments made after the publication of this manual are accompanied by a change in the serial number prefix. Changes to the parts list are recorded by serial number prefix on a MANUAL CHANGES supplement. Also, parts list errors are noted in the ERRATA portion of the MANUAL CHANGES supplement.

6-7. ILLUSTRATED PARTS BREAKDOWN

Most mechanical parts are identified in Figures 6-1 through 6-7. These figures are located near the end of the Replaceable Parts table.

6-8. HARDWARE

Both metric and nonmetric screws are used in the Carrier Noise Test Set.

6-9. ORDERING INFORMATION

To order a part listed in the replaceable parts table, quote the Hewlett-Packard part number (with the check digit), indicate the quantity required and address the order to the nearest Hewlett-Packard office (see note). The check digit will ensure accurate and timely processing of your order.

To order a part that is not listed in the replaceable parts table, include the instrument model number, instrument serial number, description and function of the part, and the number of parts required. Address the order to the nearest Hewlett-Packard office.

ORDERING INFORMATION (cont'd)

NOTE

Within the USA, it is better to order directly from the HP Parts Center in Mountain View, California. Ask your nearest HP office for information and forms for the "Direct Mail Order System."

6-10. RECOMMENDED SPARES LIST

Stocking spare parts for an instrument is often done to ensure quick return to service after a malfunction occurs. Hewlett-Packard prepares a "Recommended Spares" list for this instrument. The contents of the list are based on failure reports and repair data. Quantities given are for one year of parts support. A complimentary copy of the "Recommended Spares" list may be requested from your nearest Hewlett-Packard office.

When stocking parts to support more than one instrument or to support a variety of Hewlett-Packard instruments, it may be more economical to work from one consolidated list rather than simply adding together stocking quantities from the individual instrument lists. Hewlett-Packard will prepare consolidated "Recommended Spares" lists for any number or combination of instruments. Contact your nearest Hewlett-Packard office for details.

Table 6-1. Reference Designations and Abbreviations (1 of 2)

REFERENCE DESIGNATIONS

A assembly AT attenuator; isolator; termination B fan; motor BT battery C capacitor CP coupler CR diode; diode thyristor; varactor DC directional coupler DL delay line DS annunciator; signaling device (audible or visual); lamp; LED	E miscellaneous electrical part F fuse FL fuse FL filter H hardware HY circulator J electrical connector (stationary portion); jack K relay L coil; inductor M meter MP miscellaneous mechanical part	P electrical connector (movable portion); plug Q transistor: SCR; triode thyristor R resistor RT thermistor S switch T transformer TB terminal board TC thermocouple TP test point	U integrated circuit; microcircuit V electron tube VR voltage regulator; breakdown diode W cable; transmission path; wire X socket Y crystal unit (piezo- electric or quartz) Z tuned cavity; tuned circuit
--	---	--	---

ABBREVIATIONS						
A ampere	COEF coefficient	EDP electronic data	INT internal			
ac alternating current	COM common	processing	kg kilogram			
ACCESS accessory	COMP composition	ELECT electrolytic	kHz kilohertz			
ADJ adjustment	COMPL composition	ENCAP encapsulated	$\mathbf{k}\Omega$, kilohm			
A/D analog-to-digital	CONN connector	EXT external	kV , , , , , kilovolt			
AF audio frequency	CP cadmium plate	F farad	lb pound			
AFC automatic	CRT cathode-ray tube	FET field-effect	LC inductance-			
frequency control	CTL complementary	transistor	capacitance			
AGC automatic gain	transistor logic	F/F flip-flop	LED light-emitting diode			
control	CW continuous wave	FH flat head	LF low frequency			
AL aluminum	cw clockwise	FIL H fillister head	LG long			
ALC automatic level	cm centimeter	FM. frequency modulation	LH left hand			
control	D/A digital-to-analog	FP front panel	LIM limit			
AM amplitude modula-	dB decibel	FREQ frequency	LIN linear taper (used			
tion	dBm decibel referred	FXD fixed	in parts list)			
AMPL amplifier	to 1 mW	g gram	lin linear			
APC automatic phase	dc direct current	GE germanium	LK WASH lock washer			
control	deg degree (temperature	GHz gigahertz	LO low; local oscillator			
ASSY assembly	interval or differ-	GL glass	LOG logarithmic taper			
AUX auxiliary	o ence)	GRD ground(ed)	(used in parts list)			
avg average	degree (plane	H henry	log logrithm(ic)			
AWG American wire	o angle)	hhour	LPF low pass filter			
gauge	C degree Celsius	HET heterodyne	LV low voltage			
BAL balance	o (centigrade)	HEX hexagonal	m meter (distance)			
BCD binary coded	F degree Fahrenheit	HD head	mA milliampere			
decimal	K degree Kelvin	HDW hardware	MAX maximum			
BD board	DEPC deposited carbon	HF high frequency	MΩ megohm			
BE CU beryllium	DET detector	HG mercury	MEG meg (106) (used			
copper	diam diameter	HI high	in parts list)			
BFO beat frequency	DIA diameter (used in	HP Hewlett-Packard	MET FLM metal film			
oscillator	parts list)	HPF high pass filter	MET OX metallic oxide MF medium frequency;			
BH binder head	DIFF AMPL differential	HR hour (used in	microfarad (used in			
BKDN breakdown	amplifier	parts list)	parts list)			
BP bandpass	div division	HV high voltage	MFR manufacturer			
BPF bandpass filter	DPDT double-pole,	Hz Hertz	mg milligram			
BRS brass	double-throw	IC integrated circuit	MHz megahertz			
BWO backward-wave	DR drive	ID , inside diameter	mH millihenry			
oscillator	DSB double sideband	IF intermediate	mho mho			
CAL calibrate	DTL diode transistor	frequency	MIN minimum			
ccw counter-clockwise	logic	IMPG impregnated in inch	min minute (time)			
CER ceramic	DVM digital voltmeter	INCD incandescent	' minute (glane			
CHAN channel	ECL emitter coupled	INCL include(s)	angle)			
cm centimeter	logic	INCL include(s)	MINAT miniature			
CMO cabinet mount only	EMF , . electromotive force	INS insulation	mm millimeter			
COAX coaxial		nonament				

NOTE

All abbreviations in the parts list will be in upper-case.

Table 6-1. Reference Designations and Abbreviations (2 of 2)

MOD modulator	OD outside diameter	PWV peak working	TD time dela
MOM momentary	OH oval head	voltage	TERM termina
MOS metal-oxide	OP AMPL operational	RC resistance-	TFT thin-film transisto
semiconductor	amplifier	capacitance	TGL toggle
ms millisecond	OPT option	RECT rectifier	THD thread
MTG mounting	OSC oscillator	REF reference	THRU through
MTR meter (indicating	OX oxide	REG regulated	TI titaniun
device)	oz ounce	REPL replaceable	TOL tolerance
mV millivolt	Ω ohm	RF radio frequency	TRIM trimme
mVac millivolt, ac	P peak (used in parts	RFI radio frequency	TSTR transisto
mVdc millivolt, dc	list)	interference	TTL transistor-transisto
mVpk millivolt, peak	PAM pulse-amplitude	RH round head; right	logic
mVp-p millivolt, peak-	modulation	hand	TV television
to-peak	PC printed circuit	RLC resistance-	TVI television interference
mVrms millivolt, rms	PCM pulse-code modula-	inductance-	TWT traveling wave tube
mW milliwatt	tion; pulse-count	capacitance	U micro (10 ⁻⁶) (used
MUX multiplex	modulation	RMO rack mount only	in parts list)
MY mylar	PDM pulse-duration	rms root-mean-square	UF microfarad (used in
UA microampere	modulation	RND round	parts list)
UF microfarad	pF picofarad	ROM . read-only memory	UHF ultrahigh frequency
UH microhenry	PH BRZ phosphor bronze	R&P rack and panel	
Umho micromho	PHL Phillips	RWV reverse working	UNREG unregulated
Us microsecond	PIN positive-intrinsic-	voltage	V vol
UV microvolt	negative		VA voltamper
UVac microvolt ac	-	S scattering parameter	Vac volts, a
LVde microvolt, de	PIV peak inverse	s second (time)	VAR variable
Wpk microvolt, neak	· 6 -	" . second (plane angle)	VCO voltage-controlled
	pk peak	S-B slow-blow (fuse)	oscillator
LVp-p microvolt, peak-	PL phase lock	(used in parts list)	Vdc volts, do
to-peak IVrms microvolt, rms	PLO phase lock	SCR silicon controlled	VDCW volts, dc, working
ZW microvoit, rms	oscillator	rectifier; screw	(used in parts list)
	PM phase modulation	SE selenium	V(F) volts, filtered
nA nanoampere	PNP positive-negative-	SECT sections	VFO variable-frequency
NC no connection	positive	SEMICON semicon-	oscillator
N/C normally closed	P/O part of	ductor	VHF very-high fre-
NE neon	POLY polystyrene	SHF superhigh fre-	quency
NEG negative	PORC porcelain	quency	Vpk volts, peak
ıF nanofarad	POS positive; position(s)	SI silicon	Vp-p volts, peak-to-peak
VIPL nickel plate	(used in parts list)	SIL silver	Vrms volts, rms
N/O normally open	POSN position	SLslide	VSWR voltage standing
NOM nominal	POT potentiometer	SNR signal-to-noise ratio	wave ratio
NORM normal	p-p peak-to-peak	SPDT single-pole,	VTO voltage-tuned
NPN negative-positive-	PP peak-to-peak (used	double-throw	oscillator
negative	in parts list)	SPG spring	VTVM vacuum-tube
NPO negative-positive	PPM pulse-position	SR split ring	voltmeter
zero (zero tempera-	modulation	SPST single-pole,	V(X) volts, switched
ture coefficient)	PREAMPL preamplifier	single-throw	W watt
NRFR not recommended	PRF pulse-repetition	SSB single sideband	W/ with
for field replace-	frequency	SST stainless steel	WIV working inverse
ment	PRR pulse repetition	STL steel	voltage
SR not separately	rate	SQ square	WW wirewound
replaceable	ps picosecond	SWR standing-wave ratio	W/O without
is nanosecond	PT picosecond	SYNC synchronize	YIG yttrium-iron-garnet
W nanowatt	PTM pulse-time	T timed (slow-blow fuse)	Z ₀ characteristic
OBD order by descrip-	modulation	TA tantalum	impedance
or wor by descrip-	mound tion	tantaium	unpedance
tion	PWM pulse-width	TC temperature	

NOTE

All abbreviations in the parts list will be in upper-case.

MULTIPLIERS

Abbreviation	Prefix	Multiple
T	tera	1012
G	giga	109
M	mega	106
k	kilo	103
da	deka	10
d	deci	10-1
c	centi	10-2
m	milli	10-3
μ	micro	10-6
'n	nano	10-9
p	pico	10-12
f	femto	10-15
a	atto	10-18

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A1	11729-60011	8 :	1	INDICATOR BOARD ASSEMBLY	28480	11729-60011
A1C1	0180-2617	1	4]	CAPACITOR-FXD 8.8UF+-10% 35VDC TA	25088	D6R8GS1835K
A1DS1 A1DS2 A1DS3	1990-0759 1990-0759 1990-0698	6 6 2	2	LED-LIGHT BAR MODULE LUM-INT«3MCD LED-LIGHT BAR MODULE LUM-INT«3MCD LED-LIGHT BAR MODULE LUM-INT«2MCD	28480 28480 28480	HLMP-262G HLMP-2620 1LM1-2500
A1J1	1200-0508	0	3	SOCKET-IC 14-CONT DIP-SLDR	28480	1200-0508
A1MP1 A1MP2	5041-037 7 1251-4459	5	1 3	KEY CAP FULL SHK CLIP-CABLE PLUG RTNG-DUAL INLINE 14 CONT	28480 28480	5041-0377 1251-4459
A1R1 A1R2 A1R3 A1R4 A1R5	0698-7231 0698-7235 0698-7220 0698-7220 0698-7220	2 6 9 9	1 1 8	RESISTOR 619 1% .05W F TC-0+-100 RESISTOR 909 1% .05W F TC-0+-100 RESISTOR 215 1% .05W F TC-0+-100 RESISTOR 215 1% .05W F TC-0+-100 RESISTOR 215 1% .05W F TC-0+-100	24546 24546 24546 24546 24546	C3-1/8-T0-619R-F C3-1/8-T0-909R-F C3-1/8-T0-215R-F C3-1/8-T0-215R-F C3-1/8-T0-215R-F
A1R6 A1R7 A1R8 A1R9 A1R10	0698-7220 0698-7220 0698-7220 0698-7220 0698-7220	9 9 9		RESISTOR 215 1% .05W F TC+0+-100 RESISTOR 215 1% .05W F TC+0+-100 RESISTOR 215 1% .05W F TC-0+-100 RESISTOR 215 1% .05W F TC-0+-100 RESISTOR 215 1% .05W F TC-0+-100	24546 24546 24546 24546 24546	C3-1/8-T0-215R-F C3-1/8-T0-215R-F C3-1/8-T0-215R-F C3-1/8-T0-215R-F C3-1/8-T0-215R-F
A1S1	5060-9436	7	16	PUSHBUTTON SWITCH P.C. MOUNT	28480	5060-9436
A1U1 A1U2	1826-0655 1826-0276	5	1 2	IC 18-DIP-P PKG IC 78L05A V RGLTR TO-92	27014 04713	LM3914N MC78LOSACP
A1XDS1 A1XDS2 A1XDS3	1200-0507 1200-0507 11729-80004	9 9	2	SOCKET-IC 16-CONT DIP-SLDR SOCKET-IC 16-CONT DIP-SLDR SKT, STRP 4 CONT	28480 28480 28480	1200-0507 1200-0507 11729-80004
A2	11729-60007	ź	1	FRONT PANEL KEY AND DISPLAY BOARD ASSY	28480	11729-60007
A2C1	0180-0116	1	3	CAPACITOR-FXD 6.8UF+-10% 35VDC TA	56289	150D685X9035B2
A2DS1 A2DS2 A2DS3 A2DS4 A2DS5	1990 - 0665 1990 - 0665 1990 - 0665 1990 - 0665 1990 - 0665	3 3 3	19	LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V	28480 28480 28480 28480 28480	1990-0665 1990-0665 1990-0665 1990-0665 1990-0665
A2DS6 A2DS7 A2DS8 A2DS9 A2DS10	1990 - 0865 1990 - 0865 1990 - 0865 1990 - 0865 1990 - 0865	3 3 3 3		LED-LAMP LUM-INT-1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT-1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT-1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT-1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT-1MCD IF=20MA-MAX BVR=5V	28480 28480 28480 28480 28480	1990-0665 1990-0665 1990-0665 1990-0665 1990-0685
A2DS11 A2DS12 A2DS13 A2DS14 A2DS15	1990-0865 1990-0865 1990-0865 1990-0885 1990-0885	3 3 3 3 3		LED-LAMP LUM-INT+1MCD IF-20MA-MAX 8VR-5V LED-LAMP LUM-INT-1MCD IF-20MA-MAX 8VR-5V LED-LAMP LUM-INT+1MCD IF-20MA-MAX 8VR-5V LED-LAMP LUM-INT+1MCD IF-20MA-MAX 8VR-5V LED-LAMP LUM-INT+1MCD IF-20MA-MAX 8VR-5V	28480 28480 28480 28480 28480	1990-0685 1990-0685 1990-0665 1990-0665 1990-0685
A2DS16 A2DS17 A2DS18 A2DS19	1990-0665 1990-0665 1990-0665 1990-0665	3 3 3		LEO-LAMP LUM-INT-1MCD IF-20MA-MAX BVR-5V LEO-LAMP LUM-INT-1MCD IF-20MA-MAX BVR-5V LEO-LAMP LUM-INT-1MCD IF-20MA-MAX BVR-5V LEO-LAMP LUM-INT-1MCD IF-20MA-MAX BVR-5V	28480 28480 28480 28480 28480	1990-0685 1990-0685 1990-0865 1990-0865
A2J1	1251-5722	7	1	CONNECTOR SO-PIN M POST TYPE	28480	1251-5722
A2MP1 A2MP2 A2MP3 A2MP4 A2MP5	5041-0252 5041-0252 5041-0252 5041-0252 5041-0252	7 7 7 7 7	5	KEY CAP 1/4 FOR LOCK BANDUIDTH SUITCHES KEY CAP 1/4 FOR LOCK BANDUIDTH SUITCHES	28480 28480 28480 28480 28480	5041-0252 5041-0252 5041-0252 5041-0252 5041-0252
A2MP6 A2MP7 A2MP8 A2MP9 A2MP10	\$041-0352 \$041-0352 \$041-0352 \$041-0352 \$041-0352	8 8 8 8	\$	KEY CAP FOR FILTER SWITCHES	28480 28480 28480 28480 28480	5041-0352 5041-0352 5041-0352 5041-0352 5041-0352

Table 6-2. Replaceable Parts

	Γ	_	1	T		
Reference Designation	HP Part Number	CD	Qty	Description	Mfr Code	Mfr Part Number
A2MP11 A2MP12 A2MP13 A2MP14 A2MP15	5041-0352 5041-0352 5041-0352 5041-2811 5041-2812	30003	1	KEY CAP FOR FILTER SWITCHES KEY CAP FOR FILTER SWITCHES KEY CAP FOR FILTER SWITCHES KEY CAP (MODE) KEY CAP (LOCAL)	28480 28480 28480 28480 28480	5041-0352 5041-0352 5041-0352 5041-2911 5041-2812
A2R1 A2R2 A2R3	1810-0397 1810-0397 1810-0397	8 8 8	3	NETWORK-RES 10-SIP68.0 OHM X 9 NETWORK-RES 10-SIP68.0 OHM X 9 NETWORK-RES 10-SIP68.0 OHM X 9	01121 01121 01121	210A680 210A680 210A680
A2S1 A2S2 A2S3 A2S4 A2S5	5060-9436 5060-9436 5060-9436 5060-9436 5060-9436	7777		PUSHBUTTON SWITCH P.C. HOUNT PUSHBUTTON SWITCH P.C. MOUNT PUSHBUTTON SWITCH P.C. MOUNT PUSHBUTTON SWITCH P.C. MOUNT PUSHBUTTON SWITCH P.C. MOUNT	28480 28480 28480 28480 28480	5060-9436 5060-9436 5060-9436 5060-9436 5060-9436
A2S6 A2S7 A2S8 A2S9 A2S10	5060-9436 5060-9436 5060-9436 5060-9436 5060-9436	77777		PUSHBUTTON SWITCH P.C. MOUNT	28480 28480 28480 28480 28480	5060-9436 5060-9436 5060-9436 5060-9436 5060-9436
A2S11 A2S12 A2S13 A2S14 A2S15	5060-9436 5060-9436 5060-9436 5060-9436 5060-9436	7 7 7 7		PUSHBUTTON SWITCH P.C. MOUNT	28480 28480 28480 28480 28480	5060-9436 5080-9436 5080-9436 5080-9436 5060-9438
A2TP1	0380-0535	٥	25	TERMINAL TEST POINT PCB	00000	ORDER BY DESCRIPTION
A2M1	8159-0005	¢	1	RESISTOR-ZERO OHMS 22 AWG LEAD DIA	28480	8159-0005
A3	11729-60004	9	1	LOW PASS FILTER BOARD ASSEMBLY	28480	11729-60004
A3C1 A3C2 A3C3 A3C4 A3C5	0160-4767 0160-2208 0160-2208 0140-0210 0140-0210	4 4 4 2 2	1 2 2	CAPACITOR-FXD 20PF +-5% 200VDC CER 0+-30 CAPACITOR-FXD 330PF +-5% 300VDC MICA CAPACITOR-FXD 330PF +-5% 300VDC MICA CAPACITOR-FXD 270PF +-5% 300VDC MICA CAPACITOR-FXD 270PF +-5% 300VDC MICA	28480 28480 28480 72136 72136	0160-4767 0160-2208 0160-2208 0160-2208 0M15F271J0300WY1CR DM15F271J0300WY1CR
A3FL1 A3FL2	9135-0174 9135-0174	Ş 5	3	FILTER-LOW PASS LEADS-TERMS FILTER-LOW PASS LEADS-TERMS	28480 28480	9135-0174 9135-0174
A3J1 A3J2 A3J3 A3J4 A3J5	1250-1220 1250-1220 1250-1220 1250-1220 1250-1220	00000	6	CONNECTOR-RF SHC H PC 50-0HH CONNECTOR-RF SHC M PC 50-0HM	28480 28480 28480 28480 28480	1250-1220 1250-1220 1250-1220 1250-1220 1250-1220
A3J6	1250-1220	٥		CONNECTOR-RF SMC M PC 50-0HM	28480	1250-1220
A3K1	0490-1013	6	1		28480	0490-1013
A3L1 A3L2 A3L3 A3L4 A3L4	9140-0094 9100-1615 9140-0094 9140-0238 9140-0178	98930	2 1 2 1	INDUCTOR RF-CH-MLD 680NH 10% INDUCTOR RF-CH-MLD 1.2UH 10% INDUCTOR RF-CH-MLD 880NH 10% INDUCTOR RF-CH-MLD 82UH 5% .166DX.385LG INDUCTOR RF-CH-MLD 12UH 10% .166DX.385LG	28480 28480 28480 28480 28480	9140-0094 9100-1615 9140-0094 9140-0238 9140-0178
A3L6 A3L7	9100-1638 9140-0238	5	1	INDUCTOR RF-CH-MLD 130UH 5% .166DX.385LG INDUCTOR RF-CH-MLD 82UH 5% .166DX.385LG	28480 28480	9100-1638 9140-0238
A3MP1 A3MP2 A3MP3 A3MP4 A3MP5	2190-0124 2190-0124 2190-0124 2190-0124 2190-0124	4 4 4 4 4	14	WASHER-LK INTL T NO. 10 .195-IN-ID WASHER-LK INTL T NO. 10 .195-IN-ID	28480 28480 28480 28480 28480	2190-0124 2190-0124 2190-0124 2190-0124 2190-0124
A3MP6 A3MP7 A3MP8 A3MP9 A3MP10	2190-0124 2190-0124 2190-0124 2190-0124 2190-0124	4 4 4 4		WASHER-LK INTL T NO. 10 .195-IN-ID WASHER-LK INTL T NO. 10 .195-IN-IO WASHER-LK INTL T NO. 10 .195-IN-IO WASHER-LK INTL T NO. 10 .195-IN-ID WASHER-LK INTL T NO. 10 .195-IN-IO	28480 28480 28480 28480 28480	2190-0124 2190-0124 2190-0124 2190-0124 2190-0124
A3MP11 A3MP12 A3MP13 A3MP14 A3MP15	2190-0124 2190-0124 2950-0078 2950-0078 2950-0078	4 4 9 9 9	14	WASHER-LK INTL T NO. 10 .195-IN-ID WASHER-LK INTL T NO. 10 .195-IN-ID NUT-HEX-DBL-CHAM 10-32-THD .067-IN-THK NUT-HEX-DBL-CHAM 10-32-THD .067-IN-THK NUT-HEX-DBL-CHAM 10-32-THD .067-IN-THK	28480 28480 28480 28480 28480	2180-0124 2180-0124 2850-0078 2950-0078 2950-0078

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number	CD	Qty	Description	Mfr Code	Mfr Part Number
A3MP16 A3MP17 A3MP18 A3MP19 A3MP20	2950-0078 2950-0078 2950-0078 2950-0078 2950-0078	99999		NUT-HEX-DBL-CHAM 10-32-THD .067*IN-THK NUT-HEX-DBL-CHAM 10-32-THD .067-IN-THK NUT-HEX-DBL-CHAM 10-32-THD .067-IN-THK NUT-HEX-DBL-CHAM 10-32-THD .067-IN-THK NUT-HEX-DBL-CHAM 10-32-THD .067-IN-THK	28480 28480 28480 28480 28480	2950-0078 2950-0078 2950-0078 2950-0078 2950-0078
A3MP21 A3MP22 A3MP23 A3MP24 A3MP25	2950-0078 2950-0078 2950-0078 2950-0078 11729-20016	00000	1	NUT-MEX-DBL-CHAM 10-32-THD .067-IN-THK NUT-HEX-DBL-CHAM 10-32-THD .067-IN-THK NUT-HEX-DBL-CHAM 10-32-THD .087-IN-THK NUT-HEX-DBL-CHAM 10-32-THD .067-IN-THK LOW PASS FILTER CAN	28480 28480 28480 28480 28480	2950-0078 2950-0078 2950-0078 2950-0078 11729-20016
A3MP26 A3MP27 A3MP28 A3MP29 A3MP30	3050-0079 3050-0079 3050-0079 3050-0079 3050-0079	თთთოო	6	WASHER-FL NM NO. 2 .094-IN-ID .189-IN-00 WASHER-FL NM NO. 2 .094-IN-ID .189-IN-0D	28480 28480 28480 28480 28480 28480	3050-0079 3050-0079 3050-0079 3050-0079 3050-0079
A3MP31 A3MP32 A3MP33 A3MP34 A3MP35	3050-0079 2190-0009 2190-0009 2580-0002 2580-0002	3 4 4 4	3	WASHER-FL NM NO. 2.094-IN-ID.198-IN-00 WASHER-LK INTL T NO. 8.188-IN-ID WASHER-LK INTL T NO. 8.168-IN-ID NUT-HEX-DBL-CHAM 8-32-THD.085-IN-THK NUT-HEX-DBL-CHAM 8-32-THD.085-IN-THK	28480 28480 28480 28480 28480	3050-0079 2190-0009 2190-0009 2580-0002 2580-0002
A3R1 A3R2 A3R3 A3R4 A3R5	0698-7205 0757-0417 0757-0417 0698-0083 0698-0089 0515-0208	088843	1 2 1 1 8	RESISTOR 51.1 1% .05W F TC+0+-100 RESISTOR 562 1% .125W F YC+0+-100 RESISTOR 562 1% .125W F TC+0+-100 RESISTOR 1.96K 1% .125W F TC+0+-100 RESISTOR 1.76K 1% .5W F TC+0+-100 SCREW-MACH M3 X 0.5 14MM-LG PAN-HD (USED TO MOUNT THE A3 ASSEMBLY TO	24546 24546 24546 24546 28480 28480	C3-1/8-T0-51R1-F C4-1/8-T0-562R-F C4-1/8-T0-562R-F C4-1/8-T0-1961-F 0698-0089 0515-0208
	2190-0003	8	98	THE DECK) WASHER-LK HLCL NO. 4 .115-IN-ID (USED TO MOUNT THE A3 ASSEMBLY TO THE DECK)	28480	2190-0003
A4				NOT ASSIGNED		
A5	11729-60002	7	1	PHASELOCK BOARD ASSEMBLY	28480	11729-60002
ASC1 ASC2 ASC3 ASC4 ASC5	0180-2617 0180-2617 0180-0576 0160-3830 0160-3830	1 5 0	30 2	CAPACITOR-FXD 6.8UF+-10% 35VDC TA CAPACITOR-FXD 6.8UF+-10% 35VDC TA CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD SUF +-10% 50VDC MET-POLYC CAPACITOR-FXD 5UF +-10% 50VDC MET-POLYC	25088 25088 28480 28480 28480	D6R8GS1835K D6R8GS1835K 0160-0576 0160-3830 0160-3830
A5C6 A5C7	0160-0571 0160-0576	0 5		CAPACITOR-FXD 470PF +-20% 100VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER	28480 28480	0180-0571 0160-0576
A5CR1 A5CR2 A5CR3 A5CR4 A5CR5	1901-0050 1901-0050 1901-0050 1901-0050 1901-0050	3 3 3 3	13	DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35	28480 28480 28480 28480 28480 28480	1901-0050 1901-0050 1901-0050 1901-0050 1901-0050
ASCRS ASCR7	1901-0050 1901-0050	3		DIODE-SWITCHING 80V 200MA 2NS DC-35 DIODE-SWITCHING 80V 200MA 2NS DC-35	28480 28480	1901-0050 1901-0050
A5K1 A5K2	0490-0916 0490-0916	6	2	RELAY-REED 1A 500MA 100VDC SVDC-COIL RELAY-REED 1A 500MA 100VDC SVDC-COIL	28480 28480	0490-0916 0490-0916
A5L1 A5L2	9100-1626 9100-1626	1	3	INDUCTOR RF-CH-MLD 36UH 5% .186DX.385L6 INDUCTOR RF-CH-MLD 36UH 5% .166DX.385LG	28480 28480	9100-1626 9100-1626
A5MP1 A5MP2	5040-6852 5000-9043	3 6	1 1	EXTRACTOR, ORANGE PIN: P.C. BOARD EXTRACTOR	28480 28480	5040-6952 5000-9043
ASR1 ASR2 ASR3 ASR4 ASR6	0757-0442 0757-0442 0757-0465	9 9 9 6	9 2	RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR-TRMR 20K 10% C SIDE-ADJ 1-TRN	24546 24546 24546 24546 30983	C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-1003-F ETSOW203
ASR6 ASR7 ASR8 ASR9 ASR10	0757-0458 0757-0280 0757-0442	3 7 3 9	3 3 14	RESISTOR 5.11K 1% .125W F TC=0+-100 RESISTOR 51,1K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100	24546	C4-1/8-T0-5111-F C4-1/8-T0-5112-F C4-1/8-T0-1001-F C4-1/8-T0-1002-F C4-1/8-T0-1001-F

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number	CD	Qty	Description	Mfr Code	Mfr Part Number
A5R11 A5R12 A5R13 A5R14 A5R15	0757-0442 0757-0485 0757-0444 0898-3162 0757-0200	9 6 1 0	1 2 1	RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR 12.1K 1% .125W F TC=0+-100 RESISTOR 46.4K 1% .125W F TC=0+-100 RESISTOR 5.62K 1% .125W F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-1002-F C4-1/8-T0-1003-F C4-1/8-T0-1212-F C4-1/8-T0-4642-F C4-1/8-T0-6621-F
A5R16 A5R17 A5R18 A5R19 A5R20	0898-3162 0757-0421 0757-0443 0757-0465 0698-3154	0 4 0 6 0	2 3 3	RESISTOR 48.4K 1% .125W F TC=0+-100 RESISTOR 825 1% .125W F TC=0+-100 RESISTOR 11K 1% .125W F TC=0+-100 RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR 4.22K 1% .125W F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-4642-F C4-1/8-T0-825R-F C4-1/8-T0-1102-F C4-1/8-T0-1003-F C4-1/8-T0-4221-F
A5R21 A5R22 A5R23 A5R24 A5R25	0757-0465 0757-0438 0757-0461 0757-0438 0757-0439	63234	1	RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR 5,11K % .125W F TC=0+-100 RESISTOR 68.1K 1% .125W F TC=0+-100 RESISTOR 5,11K 1% .125W F TC=0+-100 RESISTOR 6.81K 1% .125W F TC=0+-100	24546 24546 24548 24546 24546	C4-1/8-T0-1003-F C4-1/8-T0-5111-F C4-1/8-T0-6812-F C4-1/8-T0-5111-F C4-1/8-T0-6811-F
ASR26 ASR27 ASR28 ASR29 ASR30	0757-0280 0757-0421 0757-0443 0757-0465 0757-0465	3 4 0 6		RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 825 1% .125W F TC=0+-100 RESISTOR 11K 1% .125W F TC=0+-100 RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR 100K 1% .125W F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-1001-F C4-1/8-T0-825R-F C4-1/8-T0-1102-F C4-1/8-T0-1003-F C4-1/8-T0-1003-F
A5R31 A5R32 A5R33 A5R34 A5R35	0757-0485 0757-0443 0757-0442 2100-2516 2100-2516	60000	2	RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR 11K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR-TRMR 100K 10% C SIDE-ADJ 1-TRN RESISTOR-TRMR 100K 10% C SIDE-ADJ 1-TRN	24546 24546 24546 32997 32997	C4-1/8-T0-1003-F C4-1/8-T0-1102-F C4-1/8-T0-1002-F 3329W-1-104 3329W-1-104
ASR36 ASR37 ASR38 ASR39 ASR40	0698-3450 2100-2514 0757-0485 0698-3160 0698-3160	9 1 6 8	1	RESISTOR 42.2K 1% .125W F TC-0+-100 RESISTOR-TRMR 20K 10% C SIDE-ADJ 1-TRN RESISTOR 100K 1% .125W F TC-0+-100 RESISTOR 31.6K 1% .125W F TC-0+-100 RESISTOR 31.6K 1% .125W F TC-0+-100	24546 30983 24546 24546 24546	C4-1/8-T0-4222-F ET50M203 C4-1/8-T0-1003-F C4-1/8-T0-3162-F C4-1/8-T0-3162-F
A5R41 A5R42 A5R43 A5R44 A5R45	0757-0442 0698-3440 0757-0465 0757-0280 0757-0401	9 7 6 3 0	1	RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 198 1% .125W F TC=0+-100 RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-1002-F C4-1/8-T0-196R-F C4-1/8-T0-1003-F C4-1/8-T0-1001-F C4-1/8-T0-101-F
A5R46 A5R47 A5R48 A5R49	0698-0062 0757-0401 0757-0280 0757-0394	7 0 3 0	1	RESISTOR 484 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 51.1 1% .125W F TC=0+-100	24548 24548 24548 24548	C4-1/8-T0-4640-F C4-1/8-T0-101-F C4-1/8-T0-1001-F C4-1/8-T0-51R1-F
ASTP1 ASTP2 ASTP3 ASTP4 ASTP5	0360-0535 0360-0535 0360-0535 0360-0535 0360-0535	0 0 0 0		TERMINAL TEST POINT PCB	00000 00000 00000 00000	ORDER BY DESCRIPTION
ASTP6 ASTP7 ASTP8	0360-0535 0360-0535 0360-0535	0 0		TERMINAL TEST POINT PCB TERMINAL TEST POINT PCB TERMINAL TEST POINT PCB	00000 00000 00000	ORDER BY DESCRIPTION ORDER BY DESCRIPTION ORDER BY DESCRIPTION
A5U1 A5U2 A5U3 A5U4 A5U5	1826-0600 1826-0600 1820-1374 1820-1374 1820-1374	9 4 4 4		IC OP AMP LOW-BIAS-H-IMPD QUAD 14-01P-P IC OP AMP LOW-BIAS-H-IMPD QUAD 14-01P-P IC SWITCH ANLE QUAD 16-01P-P PKG IC SWITCH ANLE QUAD 16-01P-P PKG IC SWITCH ANLE QUAD 16-01P-P PKG	01295 01295 24355 24355 24355	TL074ACN TL074ACN AD75:0DIJN AD75:0DIJN AD75:0DIJN
A5U6 A5U7 A5U8 A5U8	1820-1374 1820-1962 1826-0276 1826-0547	4 6 5 3	1	IC SWITCH ANLG QUAD 16-DIP-P PKG IC DCDR CMOS BCD-TO-DEC IC 78L05A Y RGLTR TO-92 IC OP AMP LOW-BIAS-H-IMPD DUAL 8-DIP-P	24355 3L585 04713 01295	AD7510DIJN CD40288E MC78L0SACP TL072ACP
ASVR1 ASVR2	1902-0958 1902-0951	2 5		DIODE-ZNR 10V 5% 00-35 PD=.4W TC++.075% DIODE-ZNR 5.1V 5% D0-35 PD=.4W TC++.035%	28480 28480	1902-0958 1902-0951
A6 A6A1	11729-60014	1	1	LOW NOISE AMPLIFIER ASSEMBLY LOW NOISE AMPLIFIER BOARD ASSEMBLY	28480 28480	11729-60014

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number	CD	Qty	Description	Mfr Code	Mfr Part Number
ABA1C1 ABA1C2 ABA1C3 ABA1C4 ABA1C5	0180-3348 0180-3384 0180-3345 0180-3341	7 1 4 0	1 1 1	NOT ASSIGNED CAPACITOR-FXD 100UF CAPACITOR-FXD 100UF CAPACITOR-FXD 1500UF CAPACITOR-FXD 330UF	28480 28480 28480 28480 28480	0180-3348 0180-3384 0180-3345 0180-3341
A6A1C6 A6A1C7 A6A1C8 A6A1C9 A6A1C10	0180-3383 0160-3875 0160-3875 0180-3346 0180-3228	03352	1 2 1 1	CAPACITOR-FXD 2700UF CAPACITOR-FXD 22PF +-5% 200VDC CER 0+-30 CAPACITOR-FXD 22PF +-5% 200VDC CER 0+-30 CAPACITOR-FXD 680UF CAPACITOR-FXD 100UF +-20% 10VDC AL	28480 28480 28480 28480 28480	0180-3383 0180-3875 0180-3875 0180-3348 0180-3228
A8A1C11 A8A1C12	0180-3347 0180-2437	6 1	1	CAPACITOR-FXD 330UF CAPACITOR-FDTHRU 5000PF +80 -20% 200V	28480 28480	0180-3347 0160-2437
AGA1CR1 AGA1CR2 AGA1CR3 AGA1CR4 AGA1CR5	1901-0050 1901-0050 1901-0050 1901-0050 1901-0050	33333	i	DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35	28480 28480 28480 28480 28480 28480	1901-0050 1901-0050 1901-0050 1901-0050 1901-0050
A6A1CR6 A6A1CR7	1901-0050 1901-0028	3 5	1	DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-PUR RECT 400V 750MA DO-28	28480 28480	1801-0050 1801-0028
A6A10S1	1990-0944	3	1	LED-RED	28480	1990-0944
A6A1E1 A6A1E2	9170-0847 9170-0847	3	2	CORE-SHIELDING BEAD CORE-SHIELDING BEAD	02114 02114	56-590-65/3B PARYLENE COATED 56-590-65/3B PARYLENE COATED
A6A1J1 A6A1J2	1250-1425 1250-1425	7 7	2	CONNECTOR-RF SMC M SGL-HOLE-RR 50-OHM CONNECTOR-RF SMC M SGL-HOLE-RR 50-OHM	28480 28480	1250-1425 1250-1425
A6A1MP1 A6A1MP2 A6A1MP3 A6A1MP4 A6A1MP5	1205-0011 1205-0011 1205-0011 1205-0037 0360-0005	00009	3 1 1	MEAT SINK TO-5/TO-39-CS MEAT SINK TO-5/TO-39-CS MEAT SINK TO-5/TO-39-CS MEAT SINK TO-18-CS TERMINAL-SLOR LUG PL-MTG FOR-#8-SCR	28480 28480 28480 28480 28480	1205-0011 1205-0011 1205-0011 1205-0037 0360-0005
A6A1MP\$ A6A1MP7 A6A1MP\$ A6A1MP9 A6A1MP10	2190-0003 2190-0003 2190-0003 2190-0009 2190-0124	8 8 8 4		WASHER-LK HLCL NO. 4 .115-IN-ID WASHER-LK HLCL NO. 4 .115-IN-ID WASHER-LK HLCL NO. 4 .115-IN-ID WASHER-LK INTL T NO. 8 .168-IN-ID WASHER-LK INTL T NO. 10 .195-IN-ID	28480 28480 28480 28480 28480	2190-0003 2190-0003 2190-0003 2190-0009 2190-0124
ASA1MP11 ASA1MP12 ASA1MP13 ASA1MP14 ASA1MP15	2190-0124 2200-0139 2200-0139 2200-0139 2580-0002	4 4 4 4	5	WASHER-LK INTL T NO. 10 .195-IN-ID SCREW-MACH 4-40 .25-IN-LG PAN-HD-POZI SCREW-MACH 4-40 .25-IN-LG PAN-HD-POZI SCREW-MACH 4-40 .25-IN-LG PAN-HD-POZI NUT-HEX-DBL-CHAM 8-32-THD .085-IN-THK	28480 28480 28480 28480 28480	2190-0124 2200-0139 2200-0139 2200-0139 2580-0002
A6A1MP16 A6A1MP17 A6A1MP18	2950-0078 2950-0078 11729-20015	9 8	,	NUT-HEX-DBL-CHAM 10-32-THD .067-IN-THK NUT-HEX-DBL-CHAM 10-32-THD .067-IN-THK COVER LOW NOISE AMPLIFIER	28480 28480 28480	2950-0078 2950-0078 11729-20015
A6A1Q1 A6A1Q2 A6A1Q3 A6A1Q4 A8A1Q4	1854-0597 1854-0597 1854-0597	2 2 2	6	TRANSISTOR NPN 2N5943 SI TO-39 PD=1W TRANSISTOR NPN 2N5943 SI TO-39 PD=1W TRANSISTOR NPN 2N5943 SI TO-39 PD=1W NOI ASSIGNED	04713 04713 04713	2N5943 2N5943 2N5943
A6A1Q5 A6A1Q6 A6A1Q7 A6A1Q8 A6A1Q9 A6A1Q10	1853-0430 1854-0597 1854-0597 1854-0597 1853-0405 1853-0314	22299	1 1	TRANSISTOR PNP 2N4959 SI TO-72 PD=200MU TRANSISTOR NPN 2N5943 SI TO-39 PD=1W TRANSISTOR NPN 2N5943 SI TO-39 PD=1W TRANSISTOR NPN 2N5943 SI TO-39 PD=1W TRANSISTOR PNP SI PD=300MW FT=850MHZ TRANSISTOR PNP 2N2905A SI TO-39 PD=600MW	04713 04713 04713 04713 04713 04713	2N4959 2N5943 2N5943 2N5943 2N4209 2N2905A
A6A1R1 A6A1R2 A6A1R3 A6A1R4 A6A1R5	0757-0280 0757-0441 0757-0458 0698-3153	3 8 7 9	1 2	NOT ASSIGNED RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 8.25K 1% .125W F TC=0+-100 RESISTOR 51.1K 1% .125W F TC=0+-100 RESISTOR 3.83K 1% .125W F TC=0+-100	24546 24546 24546 24548	C4-1/8-T0-1001-F C4-1/8-T0-8251-F C4-1/8-T0-5112-F C4-1/8-T0-3631-F
AGA1R6 AGA1R7 AGA1R8 AGA1R9 AGA1R10	0698-3150 0757-0428 0698-3446 0757-0422 0757-0418	6 1 3 5 7	1 1 2 1	RESISTOR 2.37K 1% .125W F TC=0+-100 RESISTOR 1.62K 1% .125W F TC=0+-100 RESISTOR 383 1% .125W F TC=0+-100 RESISTOR 909 1% .125W F TC=0+-100 RESISTOR 911 1% .125W F TC-0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-2371-F C4-1/8-T0-1621-F C4-1/8-T0-383R-F C4-1/8-T0-909R-F C4-1/8-T0-511R-F

Table 6-2. Replaceable Parts

Reference Designation		C	Qty	Description	Mfr Code	Mfr Part Number
A6A1R11 A6A1R12 A6A1R13 A6A1R14 A6A1R15	0698-3154 0698-0085 0757-0420 0757-0405 0757-0401	00340	1 2 1	RESISTOR 4.22K 1% .125W F TC=0+-100 RESISTOR 2.61K 1% .125W F TC=0+-100 RESISTOR 750 1% .125W F TC=0++100 RESISTOR 162 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100	24546 24548 24546 24546 24546	C4-1/8-T0-4221-F C4-1/8-T0-2611-F C4-1/8-T0-751-F C4-1/8-T0-162R-F C4-1/8-T0-101-F
AGA1R16 AGA1R17 AGA1R16 AGA1R19 AGA1R20	0757-0420 0757-0814 0698-3153 0757-0346 0757-0346	3 9 2 2	1 2	RESISTOR 750 1% .125W F TC=0+-100 RESISTOR 511 1% .5W F TC=0+-100 RESISTOR 3.83K 1% .125W F TC=0+-100 RESISTOR 10 1% .125W F TC=0+-100 RESISTOR 10 1% .125W F TC=0+-100	24546 28480 24546 24546 24546	C4-1/8-T0-751"F 0757-0814 C4-1/8-T0-3831-F C4-1/8-T0-10R0-F C4-1/8-T0-10R0-F
ABA1 R21 ABA1 R22 ABA1 R23 ABA1 R24 ABA1 R25	0757-1094 0757-1002 0698-8822 0698-8822 0757-1002	99999	1 2 2	RESISTOR 1.47K 1% .125W F TC=0+-100 RESISTOR 81.9 1% .5W F TC=0+-100 RESISTOR 8.81 1% .125W F TC=0+-100 RESISTOR 8.81 1% .125W F TC=0+-100 RESISTOR 61.9 1% .5W F TC=0+-100	24546 28480 28480 28480 28480	C4-1/8-T0-1471-F 0757-1002 0698-8822 0698-8822 0757-1002
A6A1R26 A6A1R27	0698-3435 0757-0458	0 7	1	RESISTOR 38.3 1% .125W F TC*0+-100 RESISTOR 51.1K 1% .125W F TC*0+-100	24548 24546	C4-1/8-T0-38R3-F C4-1/8-T0-5112-F
A6A1TP1 A6A1TP2 A6A1TP3 A6A1TP4	0360-0535 0360-0535 0360-0535 0360-0535	0000		TERMINAL TEST POINT PCB TERMINAL TEST POINT PCB TERMINAL TEST POINT PCB TERMINAL TEST POINT PCB	00000 00000 00000 00000	ORDER BY DESCRIPTION ORDER BY DESCRIPTION ORDER BY DESCRIPTION ORDER BY DESCRIPTION
A6MP1 † A6MP2 A6MP3 A6MP4 A6MP5	11729-20097 0624-0077 0624-0077 0624-0077 0624-0077	65555	1 6	AMPLIFIER HOUSING SCREW-TPG 4-40 .312-IN-LG PAN-HD-POZI SCREW-TPG 4-40 .312-IN-LG PAN-HD-POZI SCREW-TPG 4-40 .312-IN-LG PAN-HD-POZI SCREW-TPG 4-40 .312-IN-LG PAN-HD-POZI	28480 28480 28480 28480 28480 28480	11729-20097 0624-0077 0624-0077 0624-0077 0624-0077
A6MP6 A6MP7	0624-0077 0624-0077	5		SCREW-TPG 4-40 .312-IN-LG PAN-HD-POZI SCREW-TPG 4-40 .312-IN-LG PAN-HD-POZI	28480 28480	0624-0077 0624-0077
A7	11729-60013	0	1	POWER SUPPLY BOARD ASSEMBLY	28480	11729-60013
A7C1 A7C2 A7C3 A7C4 A7C5 [†]	0180-3285 0180-3281 0180-3284 0180-3280 0160-5652	1 7 0 6 8	1	CAPACITOR-FXD ELEC 1200UF SOVDC CAPACITOR-FXD 6500UF +75-10% 30VDC AL CAPACITOR-FXD .01SF+75-10% 15VDC AL CAPACITOR-FXD 1800UF +100-10% 30VDC AL CAPACITOR-FXD 2.2UF +-20% 50VDC CEP	28480 28480 28480 28480 28480	0180-3285 0180-3281 0180-3284 0180-3280 0180-5652
A7C6 A7C7 A7C8 [†] A7C9 A7C10	0180-2205 0180-1743 0160-5652 0180-0116 0180-0374	3 2 8 1 3	1 2 3	CAPACITOR-FXD .33UF+-10% 35VDC TA CAPACITOR-FXD .1UF+-10% 35VDC TA CAPACITOR-FXD 2.2UF +-20% 50VDC CER CAPACITOR-FXD 6.8UF+-10% 35VDC TA CAPACITOR-FXD 10UF+-10% 20VDC TA	56289 56289 28480 56289 56289	1500334X8035A2 1500104X9035A2 0160-5652 1500685X903582 1500106X902082
A7C11 A7C12 A7C13 A7C14 A7C15	0180-0291 0180-1743 0180-0291 0180-0291 0180-0423	3 2 3 3 3		CAPACITOR-FXD 1UF+-10% 35VDC TA CAPACITOR-FXD .1UF+-10% 35VDC TA CAPACITOR-FXD 1UF+-10% 35VDC TA CAPACITOR-FXD 1UF+-10% 35VDC TA CAPACITOR-FXD 100UF+50-10% 25VDC AL	56289 56289 56289 56289 28480	150D105X9035A2 150D104X9035A2 150D105X9035A2 150D105X9035A2 0180-0423
A7C16 A7C17 A7C18	0180-0491 0160-4005 0160-3876	5 3 4	1	CAPACITOR-FXD 10UF+-20% 25VDC TA CAPACITOR-FXD 1UF +-20% 100VDC CER CAPACITOR-FXD 47PF +-20% 200VDC CER	28480 28480 28480	0180-0491 0160-4005 0160-3876
A7CR1 A7CR2 A7CR3 A7CR4 A7CR5	1901-0159 1901-0159 1901-0159 1901-0159 1901-0159	3333		DIODE-PUR RECT 400V 750HA D0-41 DIODE-PUR RECT 400V 750MA D0-41 DIODE-PUR RECT 400V 750MA D0-41 DIODE-PUR RECT 400V 750MA D0-41 DIODE-PUR RECT 400V 750MA D0-41	28480 28480 28480 28480 28480	1901-0159 1901-0159 1901-0159 1901-0159 1901-0159
A7CR6 A7CR7 A7CR8 A7CR9 A7CR10	1901-0159 1901-0159 1901-0159 1901-0159	3 3 3 3		DIODE-PWR RECT 400V 750MA D0-41	28480 28480 28480 28480 28480	1901-0159 1901-0159 1901-0159 1901-0159 1901-0159
A7CR11 A7CR12 A7CR13 A7CR14	1901-0159 1901-0159 1901-0159 1901-0159	3333		DIODE-PWR RECT 400V 750MA D0-41	28480 28480 28480 28480 28480	1901-0159 1901-0159 1901-0159 1901-0159

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number	CD	Qty	Description	Mfr Code	Mfr Part Number
A70S1 A70S2 A70S3 A70S4	1990 - 0678 1990 - 0678 1990 - 0678 1990 - 0678	9000	4	LED-LAMP LUM-INT=800UCD IF=30MA-MAX LEO-LAMP LUM-INT=800UCD IF=30MA-MAX LEO-LAMP LUM-INT=800UCD IF=30MA-MAX LED-LAMP LUM-INT=800UCD IF=30MA-MAX	28480 28480 28480 28480 28480	1990-0678 1990-0678 1990-0678 1990-0678
A7F1 [†] A7F2 A7F3 A7F4	2110-0202 2110-0002 2110-0055 2110-0012	9 2	! ! ! 2	FUSE .5A 250V TD 1.25X.25 UL FUSE 2A 250V NTD 1.25X.25 UL FUSE 4A 250V NTD 1.25X.25 UL FUSE .5A 250V NTD 1.25X.25 UL	75915 75915 75915 28480	313.500 312002 312004 2110-0012
A731 A7J2 A7J3 A7J4 A7J5	1200-0508 1251-3475 1251-7165 1251-7727 1250-0836	0 3 6 6 2	1 1 3	SOCKET-IC 14-CONT DIP-SLDR CONNECTOR 10-PIN M POST TYPE CONNECTOR 26-PIN M POST TYPE CONNECTOR- 7 PIN CONNECTOR-RF SMC M PC 50-OHM	28480 28480 28480 28480 28480	1200-0508 1251-3475 1251-7165 1251-7727 1250-0836
A736 A737 A738 A739	1250-0836 1250-0836 1250-0835 1250-0835	2 2 1 1	Ż	CONNECTOR-RE SMC M PC 50-0HM CONNECTOR-RE SMC M PC 50-0HM CONNECTOR-RE SMC M PC 50-0HM CONNECTOR-RE SMC M PC 50-0HM	28480 28480 28480 28480	1250-0836 1250-0836 1250-0835 1250-0835
A7L1	9100-1641	0	1	INDUCTOR RF-CH-MLD 240UH 5% .166DX.385LG	28480	9100-1641
A7MP1 A7MP2 A7MP3 A7MP4 A7MP5	1251-4459 2110-0269 2110-0269 2110-0269 2110-0269	50000	8	CLIP-CABLE PLUG RTNG-DUAL INLINE 14 CONT FUSEMOLDER-CLIP TYPE.250-FUSE FUSEMOLDER-CLIP TYPE.250-FUSE FUSEMOLDER-CLIP TYPE.250-FUSE FUSEMOLDER-CLIP TYPE.250-FUSE	29480 29480 28480 28480 28480	1251-4459 2110-0269 2110-0269 2110-0269 2110-0269
A7MP6 A7MP7 A7MP8 A7MP9	2110-0269 2110-0269 2110-0269 2110-0269	0000		FUSEHOLDER-CLIP TYPE.250-FUSE FUSEHOLDER-CLIP TYPE.250-FUSE FUSEHOLDER-CLIP TYPE.250-FUSE FUSEHOLDER-CLIP TYPE.250-FUSE	28480 28480 28480 28480	2110-0269 2110-0269 2110-0269 2110-0269
A7Q1 A7Q2 A7Q3 A7Q4	1884-0244 1884-0244 1884-0244	999	3	NOT ASSIGNED THYRISTOR-SCR VRRM-400 THYRISTOR-SCR VRRM-400 THYRISTOR-SCR VRRM-400	3L585 3L585 3L585	\$2600D \$2600D \$2600D
A7R1 A7R2 A7R3 A7R4 A7R5	0757-0280 0698-3447 0757-0401 0757-0288	3 4 0 1	4	NOT ASSIGNED RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 422 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 9.09K 1% .125W F TC=0+-100	24546 24546 24546 19701	C4-1/8-T0-1001-F C4-1/8-T0-422R-F C4-1/8-T0-101-F MF4C1/8-T0-9091-F
A7R6 A7R7 A7R9 A7R9 A7R10	0698-3155 0757-0422 0698-3155 0757-0403 2100-3288	1 5 1 2 8	2 1 1	RESISTOR 4.64K 1% .125W F TC=0+-100 RESISTOR 909 1% .125W F TC=0+-100 RESISTOR 4.64K 1% .125W F TC=0+-100 RESISTOR 121 1% .125W F TC=0+-100 RESISTOR-TRMR 50 20% C TOP-ADJ 17-TRN	24546 24546 24546 24546 28480	C4-1/8-T0-4641-F C4-1/8-T0-909R-F C4-1/8-T0-4841-F C4-1/8-T0-121R-F 2100-3288
A7R11 A7R12 A7R13 A7R14 A7R15	0698-3442 0698-3154 0698-3445 0757-0401 0757-0280	9 0 2 0 3	1	RESISTOR 237 1% .125W F TC-0+-100 RESISTOR 4.22K 1% .125W F TC-0+-100 RESISTOR 348 1% .125W F TC-0+-100 RESISTOR 100 1% .125W F TC-0+-100 RESISTOR 1K 1% .125W F TC-0+-100	24548 24548 24548 24548 24548 24548	C4-1/9-T0-237R-F C4-1/8-T0-4221-F C4-1/8-T0-348R-F C4-1/8-T0-101-F C4-1/8-T0-1001-F
A7R16 A7R17 A7R18 A7R19 A7R20	0757-0401 0757-0280 0698-3443 0696-3447 0698-3447	0 3 0 4 4	1	RESISTOR 100 1% .125W F TC+0+-100 RESISTOR 1K 1% .125W F TC+0+-100 RESISTOR 287 1% .125W F TC+0+-100 RESISTOR 422 1% .125W F TC+0+-100 RESISTOR 422 1% .125W F TC+0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-101-F C4-1/8-T0-1001-F C4-1/8-T0-287R-F C4-1/8-T0-422R-F C4-1/8-T0-422R-F
A7R21 A7R22 A7R23 A7R24 A7R25	0698-3447 0757-0280 0757-0280 0757-0280 0757-0280	4 3 3 3 3		RESISTOR 422 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100	24546 24546 24546 24546 24546 24546	C4-1/8-T0-422R-F C4-1/8-T0-1001-F C4-1/8-T0-1001-F C4-1/8-T0-1001-F C4-1/8-T0-1001-F
A7R26 A7R27 A7R28 A7R29	0698-3390 0764-0033 0698-3390 0764-0033	6 9 6 9	2 2	RESISTOR 19.6 1% .5W F TC=0+-100 RESISTOR 33 5% 2W MO TC=0+-200 RESISTOR 19.6 1% .5W F TC=0+-100 RESISTOR 33 5% 2W MO TC=0+-200	28480 28480 28480 28480	0698-3390 0764-0033 0698-3390 0764-0033
A7TP1 A7TP2 A7TP3 A7TP4 A7TP5	0360-0535 0360-0535 0360-0535 0360-0535	0 0 0 0		TERMINAL TEST POINT PCB	00000 00000 00000 00000 00000	ORDER BY DESCRIPTION

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number	C	Qty	Description	Mfr Code	Mfr Part Number
A7VR1 A7VR2 A7VR3 A7VR4 A7VR5	1902-0969 1902-0644 1902-0963 1902-0951 1902-1340	53958	1 1 1	DIODE-ZNR 30V 5% DO-35 PD=.4W TC=+.095% OIODE-ZNR 183638 30V 5% PD-5W TC=+29NV DIODE-ZNR 16V 5% DO-35 PD=.4W TC=+.088% DIODE-ZNR 5.1V 5% DO-35 PD=.4W TC=+.035% DIODE-ZNR 1N53558 18V 5% PD=5W IR=500NA	28480 28480 28480 28480 28480 04713	1902-0969 1902-0644 1902-0963 1902-0951 1N53559
A7VR6 A7VR7 A7VR8	1902-0965 1902-0958 1902-0958	1 2 2	1	DIODE-ZNR 20V 5% DO-35 PD=.4W TC=+.092% DIODE-ZNR 10V 5% DO-35 PD=.4W TC=+.075% DIODE-ZNR 10V 5% DO-35 PD=.4W TC=+.075%	28480 28480 28480	1902-0965 1902-0958 1902-0958
A7XA5	1251-1385	6	1	CONNECTOR-PC EDGE 22-CONT/ROW 2-ROWS	28480	1251-1365
A8	11729-60012	9	1	HP-IB INTERCONNECT BOARD ASSEMBLY	28480	11729-60012
A8J1 A8J2 A8J3	1251-5615 1251-3283 1200-0508	7 1 0	2 1	CONNECTOR 34-PIN M POST TYPE CONNECTOR 24-PIN F MICRORIBBON SOCKET-IC 14-CONT DIP-SLDR	28480 28480 28480	1251-5615 1251-3283 1200-0508
A8MP1 A8MP2 A8MP3 A8MP4 A8MP5	0380-0643 0380-0643 0515-0054 0515-0054 0535-0004	3 7 7	2	STANDOFF-HEX .255-IN-LG 6-32THD STANDOFF-HEX .255-IN-LG 6-32THD SCREW-MACH M3 X 0.5 10MM-LG PAN-HD SCREW-MACH M3 X 0.5 10MM-LG PAN-HD NUT-HEX DBL-CHAM M3 X 0.5 2.4MM-THK	00000 00000 28480 28480 00000	ORDER BY DESCRIPTION ORDER BY DESCRIPTION 0515-0054 ORDER BY DESCRIPTION
A8MP6 A8MP7 A8MP8 A8MP9 A8MP10	0535-0004 1251-4459 1530-1098 1530-1098 2190-0017	95444	2	NUT-HEX DBL-CHAM M3 X 0.5 2.4MM-THK CLIP-CABLE PLUG RING-DUAL INLINE 14 CONT CLEVIS 0.070-IN W SLT: 0.454-IN PIN CTR CLEVIS 0.070-IN W SLT: 0.454-IN PIN CTR WASHER-LK HLCL NO. 8 .168-IN-ID	00000 28480 00000 00000 28480	ORDER BY DESCRIPTION 1251-4459 ORDER BY DESCRIPTION ORDER BY DESCRIPTION 2190-0017
A8MP11 A8MP12 A8MP13	2190-0017 2190-0019 2190-0019	4 6	2	WASHER-LK HLCL NO. 8 .168-IN-ID WASHER-LK HLCL NO. 4 .115-IN-ID WASHER-LK HLCL NO. 4 .115-IN-ID	28480 28480 28480	2190-0017 2190-0019 2190-0019
49 [†]	11729-60083	4	1	MICROPROCESSOR BOARD ASSEMBLY	28480	11729-80083
A9C1 A9C2 A9C3 A9C4 A9C5	0180-2207 0180-2620 0180-2620 0160-0576 0160-0576	ភេទទុស	1 4	CAPACITOR-FXD 100UF+-10% 10VDC TA CAPACITOR-FXD 2.2UF+-10% 50VDC TA CAPACITOR-FXD 2.2UF+-10% 50VDC TA CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER	56289 25088 25088 26480 28480	150D107X9010R2 D2R2G51850K D2R2G51850K 0160-0576 0160-0576
A908 A907 A908 A909 A9010	0160-0576 0160-0576 0160-0576 0160-0576 0180-0374	கைக்கை		CAPACITOR-FXD .1UF +-20% SOVDC CER CAPACITOR-FXD 10UF+-10% 20VDC TA	28480 28480 28480 28480 56289	0180-0578 0160-0576 0160-0576 0160-0576 150D106X9020B2
A9C11 A9C12 A9C13 A9C14 A9C15	0180-0374 0160-0127 0160-0576 0160-0576 0160-0576	32555	1	CAPACITOR-FXD 10UF+-10% 20VDC TA CAPACITOR-FXD 1UF +-20% 25VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER	56289 28480 28480 28480 28480	150D106X9020B2 0160-0127 0160-0576 0160-0576 0160-0576
A9C16 A9C17 A9C18 A9C19 A9C20	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	មា ទី		CAPACITOR-FXD .1UF +-20% 50VDC CER	29480 29480 28480 28480 28480	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576
A9C21 A9C22 A9C23 A9C24 A9C25	0180-1745 0180-0116 0160-0576 0160-0576 0160-0576	4 1 5 5 5	1	CAPACITOR-FXD 1.SUF+-10% 20VDC TA CAPACITOR-FXD 6.8UF+-10% 35VDC TA CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER	56289 56289 28480 28480 28480	150D155X9020A2 150D685X9035B2 0160-0576 0160-0576 0160-0576
A9C26 A9C27 A9C28 A9C28 A9C30	0160-0576 0180-0578 0160-0576 0160-0576 0160-0576	5555 55	j	CAPACITOR-FXD .1UF +-20% SOVDC CER CAPACITOR-FXD .1UF +-20% SOVDC CER CAPACITOR-FXD .1UF +-20% SOVDC CER CAPACITOR-FXD .1UF +-20% SOVDC CER CAPACITOR-FXD .1UF +-20% SOVDC CER	28480 28480 28480 28480 28480	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576
A9C31 A9C32 A9C33 A9C34 A9C35	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576	\$ 5 5 5 5		CAPACITOR-FXD .1UF +-20% 50VDC CER	28490 28490 28480 28480 28480	0160-0576 0160-0576 0160-0576 0160-0576 0160-0576

Table 6-2. Replaceable Parts

Reference Designation		CD	Qty	Description	Mfr Code	Mfr Part Number
A9C36 A9C37 A9C38 A9C39 [†] A9C40	0160-0576 0180-2620 0180-2620 0160-0571 0180-2617	S 6 0	2	CAPACITOR-FXD .1UF +-20% SOVDC CER CAPACITOR-FXD 2.2UF+-10% SOVDC TA CAPACITOR-FXD 2.2UF+-10% SOVDC TA CAPACITOR-FXD 470PF +-20% 100VDC CER CAPACITOR-FXD 6.8UF+-10% 35VDC TA	28480 25088 25088 28480 25088	0180-0576 D2R2GS1850K D2R2GS1850K 0180-0571 D6R8GS1835K
A9CR1 A9DS1	1901-0376 1990-0654	6	1 2	DIODE-GEN PRP 35V SOMA DO-35 LED-LAMP LUM-INT=SOOUCD IF=50MA-MAX	28480 28480	1901-0376 HLMP-6204
A9052 A911 A912 A913† A914	1990-0654 1251-5615 1251-7335 1251-8967 1251-4428	0 7 2 8	1 1	LED-LAMP LUM-INT-SOOUCD IF-SOMA-MAX CONNECTOR 34-PIN M POST TYPE CONNECTOR CONN-POST TYPE .100-PIN-SPCG 29-CONT CONNECTOR 50-PIN M POST TYPE	28480 28480 28480 28480 28480	HLMP-6204 1251-5615 1251-7335 1251-9367 1251-4428
A9L1	9100-1626	1		INDUCTOR RF-CH-MLD 36UH 5% .166DX.385LG	28480	9100-1626
A9MP1 A9MP2 A9MP3 A9MP4 A9MP5	0361-0009 0361-0009 0361-0009 5040-1497 5040-1497	55622	3	RIVET-SEMITUB OVH .123 DÏA .188LG RIVET-SEMITUB OVH .123 DÏA .188LG RIVET-SEMITUB OVH .123 DÏA .188LG HINGE-MOLDED HINGE-MOLDED	00000 00000 00000 28480 28480	ORDER BY DESCRIPTION ORDER BY DESCRIPTION ORDER BY DESCRIPTION 5040-1497 5040-1497
A9MP6 A9MP7	5040-1497 0340-0944	2	1	HINGE-MOLDED INSULATOR-IC NYLON BLACK	28480 28480	5040-1497 0340-0944
AGR1 AGR2 AGR3 AGR4 AGR5	1610-0279 1610-0279 0698-0084 1810-0279 0757-0280	55953	6	NETWORK-RES 10-SIP4.7K OHM X 9 NETWORK-RES 10-SIP4.7K OHM X 9 RESISTOR 2.15K 1% .125W F TC-0+-100 NETWORK-RES 10-SIP4.7K OHM X 9 RESISTOR 1K 1% .125W F TC-0+-100	01121 01121 24546 01121 24546	210A472 210A472 C4-1/8-T0-2151-F 210A472 C4-1/8-T0-1001-F
A9R6 A9R7 A9R9 A9R9 A9R10	1810-0279 0757-0199 0757-0199 0757-0464 0757-0464	53355	2	NETWORK-RES 10-SIP4.7K OHM X 9 RESISTOR 21.5K 1% .125W F TC+0+-100 RESISTOR 21.5K 1% .125W F TC+0+-100 RESISTOR 90.9K 1% .125W F TC+0+-100 RESISTOR 90.9K 1% .125W F TC+0+-100	01121 24546 24546 24546 24546 24546	210A472 C4-1/8-T0-2152-F C4-1/8-T0-2152-F C4-1/8-T0-8092-F C4-1/8-T0-9092-F
ASR11 ASR12 ASR13 ASR14 ASR15	1810-0279 1810-0279 1810-0273 0757-0442 1810-0269	5 5 9 9 3	1	NETWORK-RES 10-SIP4.7K OMM X 9 NETWORK-RES 10-SIP4.7K OMM X 9 NETWORK-RES 10-SIP470.0 OMM X 9 RESISTOR 10K 1% .125W F TC=0+-100 NETWORK-RES 9-SIP10.0K OMM X 8	01121 01121 01121 24546 28480	210A472 210A472 210A471 C4-1/8-T0-1002-F 1810-0269
A9R18 A9R17 [†]	0757-0290 0698-7212	5 9	1 1	RESISTOR 6.19K 1% .125W F TC=0+-100 RESISTOR 100 1% .05W F TC=0+-100	19701 24548	MF4C1/8-T0-6191-F C3-1/8-T0-100R-F
A9S1 A9S2	3101-2126 3101-2172	4 0	1	SUITCH-SL \$-SPDT DIP-SLIDE+ASSY .1A SUITCH-TGL DIP-RKR-ASSY SPDT ,05A 30VDC	28480 28480	3101-2126 3101-2172
A9TP1 A9TP2 A9TP3 A9YP4 A9YP5	0360 - 0535 0360 - 0535 0360 - 0535 0360 - 0535 0360 - 0535	00000		TERMINAL TEST POINT PCB	00000 00000 00000 00000 00000	ORDER BY DESCRIPTION
А9ТР6 А9ТР7	0360-0535 0360-0535	0		TERMINAL TEST POINT POB TERMINAL TEST POINT POB	00000 00000	ORDER BY DESCRIPTION ORDER BY DESCRIPTION
A9U1 A9U2 A9U3 A9U4 A9U5	1820-1212 1820-2549 1818-1768 11729-80003 1820-2624	9 7 5 0 9	1 1 1 1	IC FF TTL LS J-K NEG-EDGE-TRIG IC-8291A P HPIB IC CHOS 16384 (16K) STAT RAM 150-NS 3-S EPROM IC-MPU; CLK FREQ=2MHZ, ENHANCED 6800	01295 28480 50545 28480 28480	SN74LS112AN 1820-2549 UPD446C-1(PER HP DWG) 11729-80003 1820-2624
A9U6 A9U7 A9U8 A9U9 A9U10	1820-2081 1820-1199 1820-1216 1820-1216 1820-1216	2 1 3 3 3	1 3 3	IC NMOS IC INV TIL 1S HEX 1-INP IC DCDR TIL 1S 3-TO-8-LINE 3-INP IC DCDR TIL 15 3-TO-8-LINE 3-INP IC DCDR TIL 15 3-TO-8-LINE 3-INP	04713 01295 01295 01295 01295	MC88A21P \$N74L504N \$N74L5138N \$N74L5138N \$N74L5138N
A9U11 A9U12 A9U13 A9U14 A9U15	1820-1423 1826-0138 1820-1730 1820-1730 1826-0175	4 8 6 6 3	1 1 2	IC MY TTL LS MONOSTBL RETRIG DUAL IC COMPARATOR GP QUAD 14-DIP-P PKG IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC COMPARATOR GP DUAL 14-DIP-P PKG	01295 01295 01295 01295 27014	\$N74L\$123N LM339N \$N74L\$273N \$N74L\$273N LM319N

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number	CD	Qty	Description	Mfr Code	Mfr Part Number
A9U16 A9U17 A9U18 A9U19 A9U20	11729-80002 1820-1197 1820-2024 1820-2973 1820-2973	9 9 3 1	1 2 5 14	PAL-ADRS. DECODER IC GATE TIL ES NAND QUAD 2-INP IC DRYR TIL ES LINE DRYR OCTL IC DRYR TIL PRPHL HY DUAL IC DRYR TIL PRPHL HY DUAL	28480 01295 01295 28480 28480	11729-80002 SN74LS00N SN74LS244N 1820-2973 1820-2973
A8U21 A9U22 A9U23 A8U24 A9U25	1820-2973 1820-2973 1820-1199 1820-2024 1820-1858	1 1 3 9	3	IC DRVR TTL PRPHL HV DUAL IC DRVR TTL PRPHL HV DUAL IC INV TTL LS HEX 1-INP IC DRVR TTL LS LINE DRVR OCTL IC FF TTL LS D-TYPE OCTL	28480 28480 01295 01295 01295	1820-2973 1820-2973 SN74LS04N SN74LS244N SN74LS377N
A9U26 A9U27 A9U28 A9U29 A9U30	1920-1858 1820-1858 1820-2024 1820-2973 1820-2973	9 9 3 1		IC FF TTL LS D-TYPE OCTL IC FF TTL LS D-TYPE OCTL IC DRYR TTL LS LINE DRYR OCTL IC DRYR TTL PRPHL HY DUAL IC DRYR TTL PRPHL HY DUAL	01295 01295 01295 28480 28480	SN74LS377N SN74LS377N SN74LS244N 1820-2973 1820-2973
A9U31 A9U32 A9U33 A9U34 A9U35	1820-2973 1820-2024 1820-2483 1820-2485 1820-2024	3 8 0 3	1 1	IC DRYR TTL PRPHL HY DUAL IC DRYR TTL LS LINE DRYR OCTL IC RCYR TTL LS BUS OCTL IC RCYR TTL LS BUS OCTL IC DRYR TTL LS BUS OCTL IC DRYR TTL LS LINE DRYR OCTL	28480 01295 01295 01295 01295	1820-2973 \$N74L\$244N \$N75161N \$N75160N \$N74L\$244N
A9U36 A9U37 A9U38 A9U39 A9U40	1820-2075 1820-2075 1820-2075 1820-1197 1820-1112	4 4 9 8	3	IC TRANSCEIVER TIL LS BUS OCTL IC TRANSCEIVER TIL LS BUS OCTL IC TRANSCEIVER TIL LS BUS OCTL IC GATE TIL LS NAND QUAD 2-INP IC FF TIL LS D-TYPE POS-EDGE-TRIG	28480 28480 28480 01295 01295	1820-2075 1820-2075 1820-2075 SN74LS00N SN74LS74AN
A9U41 A9U42 A9U43 A9U44 A9U45	1820-2973 1820-2973 1820-2973 1820-1199 1820-1851	1 1 1 2	2	IC DRVR TTL PRPHL HV DUAL IC DRVR TTL PRPHL HV DUAL IC DRVR TTL PRPHL HV DUAL IC INV TTL LS HEX 1-INP IC ENCOR TTL LS	28480 28480 28480 01295 01295	1820 - 2973 1820 - 2973 1820 - 2973 5N74L504N 5N74LS148N
A9U46 A9U47 A9U48 A9U49 A9U50	1820-1851 1820-1587 1820-1587 1820-1587 1820-1587	2 1 1 1 1	4	IC ENCOR TTL LS IC DRVR TTL LED DRVR HEX 1-INP	01295 27014 27014 27014 27014 27014	SN74LS148N DM8859N DM8859N DM8859N DM8859N
A9U51 A9U52 A9U53 A9U54 A9U55	1820-0668 1820-1470 1820-1445 1820-2973 1820-2973	7 1 0 1	1 1 1	IC BFR TTL NON-INV HEX 1-INP IC MUXR/DATA-SEL TTL LS 2-TO-1-LINE QUAD IC LCH TTL LS 4-BIT IC DEVR TTL PRPHL HV DUAL IC DRVR TTL PRPHL HV DUAL	01295 01295 01295 28480 28480	SN7407N SN74LS157N SN74LS375N 1820-2973 1820-2973
A9U56 A9U57	1820-2973 1820-2973	1		IC DRVR ITL PRPHL HY DUAL IC DRVR ITL PRPHL HY DUAL	28480 28480	1820-2973 1820-2973
A9XU4 A9XU5	1200-0567 1200-0654	1 7	1	SOCKET-IC 28-CONT DIP DIP-SLDR SOCKET-IC 40-CONT DIP DIP-SLDR	28480 28480	1200-0567 1200-0654
A9Y1	1813-0130	3	1	XTAL-CLOCK-OSCILLATOR 16-MHZ 0.05% TTL	28480	1813-0130
A10	11729-60064	ון	1	IF AMPLIFIER ASSEMBLY	28480	11729-60064
A10FL1	9135-0174	5	2	FILTER-LOW PASS LEADS-TERMS	28480 28480	9135-0174 1250-1887
A10J1 A10J2	1250-1887 1250-1887	5	_	SMA FEMALE CONNECTOR SMA FEMALE CONNECTOR	28480	1250-1887
A10MP1 A10MP2 A10MP3 A10MP4 A10MP5	0515-0104 0515-0104 0515-0104 0515-0104 0515-0104	00000000	30	SCREW-MACH M3 X 0.5 8MM-LG PAN-HÔ SCREW-MACH M3 X 0.5 8MM-LG PAN-HÔ	28480 28480 28480 28480 28480	0515-0104 0515-0104 0515-0104 0515-0104 0515-0104
A10MP6 A10MP7 A10MP8 A10MP9 A10MP10	0515-0104 0515-0104 0515-0104 0515-0207 0515-0207	88822	10	SCREW-MACH M3 X 0.5 8MM-LG PAN-HD SCREW-MACH M3 X 0.5 8MM-LG PAN-HD SCREW-MACH M3 X 0.5 8MM-LG PAN-HD SCREW-MACH M2 X 0.4 6MM-LG PAN-HD SCREW-MACH M2 X 0.4 6MM-LG PAN-HD	28480 28480 28480 28480 28480	0515-0104 0515-0104 0515-0104 0515-0207 0515-0207
		i				

Table 6-2. Replaceable Parts

Reference Designation		CD	Qty	Description	Mfr Code	Mfr Part Number
A10MP11 A10MP12 A10MP13 A10MP14 A10MP15	0515-0207 0515-0207 0515-0207 0515-0207 0515-0207	22222		SCREW-MACH M2 X 0.4 6MM-LG PAN-HD SCREW-MACH M2 X 0.4 6MM-LG PAN-HD	28480 28480 28480 28480 28480 28480	0515-0207 0515-0207 0515-0207 0515-0207 0515-0207
A10MP16 A10MP17 A10MP18 A10MP19 A10MP20	0515-0207 0515-0207 0515-0207 0515-0276 0515-0276	22255	12	SCREW-MACH M2 X 0.4 8MM-LG PAN-HD SCREW-MACH M2 X 0.4 8MM-LG PAN-HD SCREW-MACH M2 X 0.4 8MM-LG PAN-HD SCREW-MACH M2 X 0.4 8MM-LG 90-DEG-FLH-HD SCREW-MACH M2 X 0.4 8MM-LG 90-DEG-FLH-HD	28480 28480 28480 28480 28480	0515-0207 0515-0207 0515-0207 0515-0276 0515-0276
A10MP21 A10MP22 A10MP23 A10MP24 A10MP25	0515-0278 0515-0278 0515-0278 0515-0278 0515-0278	ស្រស្ស		SCREW-MACH M2 X 0.4 8MM-LG 90-DEG-FLH-HD SCREW-MACH M2 X 0.4 8MM-LG 90-DEG-FLH-HD	28480 28480 28480 28480 28480	0515-0276 0515-0276 0515-0276 0515-0276 0515-0276
A10MP26 A10MP27 A10MP28 A10MP29 A10MP30	0515-0276 0515-0276 0515-0276 0515-0276 0515-0276	ភភភភភភ		SCREW-MACH M2 X 0.4 8MM-LG 90-DEG-FLH-HD SCREW-MACH M2 X 0.4 8MM-LG 90-DEG-FLM-HD SCREW-MACH M2 X 0.4 8MM-LG 90-DEG-FLH-HD SCREW-MACH M2 X 0.4 8MM-LG 90-DEG-FLH-HD SCREW-MACH M2 X 0.4 8MM-LG 90-DEG-FLH-HD	28480 28480 28480 28480 28480	0515-0276 0515-0276 0515-0276 0515-0276 0515-0276
A10MP31 A10MP32 A10MP33 A10MP34 A10MP35	2190-0584 2190-0584 2190-0584 2190-0584 2190-0584	00000	8	WASHER-LK HLCL 3.0 MM 3.1-MM-ID WASHER-LK HLCL 3.0 MM 3.1-MM-ID WASHER-LK HLCL 3.0 MM 3.1-MM-ID WASHER-LK HLCL 3.0 MM 3.1-MM-ID WASHER-LK HLCL 3.0 MM 3.1-MM-ID	26480 28480 26480 26480 28480	2190-0584 2190-0584 2190-0584 2190-0584 2190-0584
A10MP36 A10MP37 A10MP38 A10MP39 A10MP40	2190-0584 2190-0584 2190-0584 2190-0654 2190-0654	0 0 5 5	12	WASHER-LK HLCL 3.0 MM 3.1-MM-ID WASHER-LK HLCL 3.0 MM 3.1-MM-ID WASHER-LK HLCL 3.0 MM 3.1-MM-ID WASHER-LK HLCL 2.0 MM 2.1-MM-ID WASHER-LK HLCL 2.0 MM 2.1-MM-ID	28480 28480 28480 28480 28480	2190-0584 2190-0584 2190-0584 2190-0654
A10MP41 A10MP42 A10MP43 A10MP44 A10MP45	2190-0654 2190-0654 2190-0654 2190-0654 2190-0654	5555		WASHER-LK HLCL 2.0 MM 2.1-MM-ID WASHER-LK HLCL 2.0 MM 2.1-MM-ID WASHER-LK HLCL 2.0 MM 2.1-MM-ID WASHER-LK HLCL 2.0 MM 2.1-MM-ID WASHER-LK HLCL 2.0 MM 2.1-MM-ID	28480 28430 28480 28480 28480	2190-0654 2190-0654 2190-0654 2190-0654 2190-0654
A10MP48 A10MP47 A10MP48 A10MP49 A10MP50	2190-0654 2190-0654 2190-0654 3050-1066 3050-1066	55500	10	WASHER-LK HLCL 2.0 MM 2.1-MM-IO WASHER-LK HLCL 2.0 MM 2.1-MM-IO WASHER-LK HLCL 2.0 MM 2.1-MM-IO WASHER-FL MTLC 2.0 MM 2.28-MM-IO WASHER-FL MTLC 2.0 MM 2.28-MM-IO	28480 28480 28480 28480 28480	2190-0854 2190-0854 2190-0854 3050-1088 3050-1088
A10MP51 A10MP52 A10MP53 A10MP54 A10MP55	3050 - 1086 3050 - 1086 3050 - 1086 3050 - 1086 3050 - 1086	00000		WASHER-FL MTLC 2.0 MM 2.28-MM-ID WASHER-FL MTLC 2.0 MM 2.28-MM-ID WASHER-FL MTLC 2.0 MM 2.28-MM-ID WASHER-FL MTLC 2.0 MM 2.28-MM-ID WASHER-FL MTLC 2.0 MM 2.28-MM-ID	28480 28480 28480 28480 28480	3050-1066 3050-1066 3050-1066 3050-1066 3050-1066
A10MP56 A10MP57 A10MP58 A10MP59 A10MP60	3050+1066 3050+1086 3050+1066 11729+00032 11729+20049		1 1	WASHER-FL MILC 2.0 MM 2.28-MM-ID WASHER-FL MILC 2.0 MM 2.28-MM-ID WASHER-FL MILC 2.0 MM 2.28-MM-ID COVER IF AMP HOUSING IF AMP	28480 28480 28480 28480 28480	3050-1066 3050-1086 3050-1088 11729-00032 11729-20049
A10MP61 A10MP62-	0380-0374	5	1	TERMINAL-SLOR LUG PL-MTG FOR-#4-SCR	79963	9-120
A10MP67	0515-0264 0515-0264		12	SCREW-MACH M3 X 0.5 30MM-LG PAN-HD SCREW-MACH M3 X 0.5 30MM-LG PAN-HD	28480 28480	0515-0264 0515-0264
	2190-0003	8		(USED TO MOUNT IF AMPLIFIER TO THE DECK.) WASHER-LK HLCL NO. 4 .115-IN-ID (USED TO MOUNT IF AMPLIFIER TO THE DECK.)	28480	2190-0003
A11	11729-60016	3	1	POWER AMPLIFIER ASSEMBLY (INCLUDES ATTENUATOR PAD ATT IF NEEDED)	28480	11723-60016
A11MP1 A11MP2 A11MP3	11729-00034 11729-00034 0960-0685 0515-0054	9 9 7	2 1 36	GASKET GASKET ER DIVISION SCREW-MACH M3 X 0.5 10MM-LG PAN-HO (USED TO MOUNT POWER AMP TO DECK)	28480 28480 28480 28480	11729-0003 4 11729-0003 4 0960-0665 0515-005 4
	2190-0003	8		WASHER-LK HLCL NO. 4 .115-IN-ID (USED TO MOUNT POWER AMP TO DECK)	28480	2190-0003
	3050-0105	6	49	WASHER-FL NTLC NO. 4 .125-IN-ID (USED TO MOUNT POWER AMP TO DECK)	28480	3050-0105

Table 6-2. Replaceable Parts

Reference		c	Qty	Description	Mfr	Mfr Part Number
Designation	Number	Þ	City	50001.511011	Code	
A12	0960-0443	1	1	MISCELLANEOUS LINE MODULE-FILTEREO (PART OF W1. DOES NOT INCLUDE C1)	28480	. 0980-0443
AT1 * AT1 * AT2 AT3	0955-0163 0955-0198 0955-0178 11593A	1 2 8 7	; ; ;	ATTENUATOR-COAXIAL 208 +308, DC TO COAXIAL ATTENUATOR - 108 ISOLATOR FREQ RANGE: 6 TO 18 GHZ; VSUR BNC TERMINATION	28480 28480 28480 28480 28480	0955-0163 0955-0198 0955-0178 11593A
∆ 1	3160-0266	3	1	FAN-TBAX 36-CFM 6-18VDC	28480	3160-0266
Ċ1	0160-4065	5	1	CAPACITOR-FXD .1UF +-20% 250VAC(RMS)	28480	0160-4085
CR1 CR2	1906-0231 11729-60053	2	1	DIODE-CT-RECT 200V 15A CRYSTAL DETECTOR (QPT, 130 ONLY)	28480 28480	1906-0231 11729-60053
F1	2110-0001	8	1	FUSE 1A 250V NTD 1.25X.25 UL (FOR 100V TO 120V AC INPUT)	75915	312001
F1	2110-0012	1		FUSE .5A 250V NTD 1.25X.25 UL (FOR 220V TO 240V AC INPUT)	28480	2110-0012
FL1 FL2 FL3 FL4	9135-0185 1400-0440 9135-0186 9135-0178 9135-0179	83990	1 1 1 1	FILTER-BANDPASS SMA FEM-TERMS (640MHZ) CABLE TIE .062-1.75-0IA .184-UD NYL FILTER-BANDPASS SMA FEM-TERMS (1.92GHZ) FILTER-BANDPASS SMA FEM-TERMS (4.48GHZ) FILTER-BANDPASS SMA FEM-TERMS (7.04GHZ)	28480 28480 28480 28480 28480 28480	9135-0186 1400-0440 9135-0188 9135-0178 9135-0179
FLS FLG FL7 FL8	9135-0180 9135-0181 9135-0182 9135-0183	3 4 5 6	1 1 1	FILTER-BANDPASS SMA FEM-TERMS (9.60GHZ) FILTER-BANDPASS SMA FEM-TERMS (12.16GHZ) FILTER-BANDPASS SMA FEM-TERMS (14.72GHZ) FILTER-BANDPASS SMA FEM-TERMS (17.28GHZ)	28480 28480 28480 28480 28480	9135-0180 9135-0181 9135-0182 9135-0183
G1 G2	0955-0182 3160-0310 0515-0597	8 3	1 1 2	COMB GENERATOR MODULE-HOTOR SPEED CONTROL FOR FAN SCREU-HACH M2.5 X 0.45 20MM-LG (USED TO MOUNT G2)	28480 03976 28480	0955-0182 3.431.036.01 0515-0597
	0535-0008 2190-0086	7	2 2	NUT-HEX DBL-CHAM M2.5 X 0.45 2MM-THK (USED TO MOUNT G2) WASHER-LK HLCL NO. 4 .115-IN-IO	28480	ORDER BY DESCRIPTION 2190-0086
	3050-0890	6	2	(USED TO MOUNT G2) WASHER-FL MILC 2.5 MM 2.78-MM-ID (USED TO MOUNT G2)	28480	3050-0890
J1 J2 J3 J4 J5	1250-0102 1250-0102 1250-0102 1250-0102 1250-0102 11729-80030	5 5 5 5	9 2	CONNECTOR-RF BNC FEM SGL-HOLE-FR SO-ÖHM OUTPUT CONN ASSY	28480 28480 28480 28480 28480	1250-0102 1250-0102 1250-0102 1250-0102 11729-80030
J6 J7	11729-60030	1		OUTPUT CONN ASSY NOT ASSIGNED	28480	11729-60030
J8 J 9 J10	1250-0102 1250-0102 1250-0102	5 5 5		CONNECTOR-RF BNC FEM SGL-HOLE-FR 50-OHM CONNECTOR-RF BNC FEM SGL-HOLE-FR 5C-OHM CONNECTOR-RF BNC FEM SGL-HOLE-FR 50-OHM	28480 28480 28480	1250-0102 1250-0102 1250-0102
J11 J12	1250-0102 1250-0102	5		CONNECTOR-RF BNC FEM SGL-HOLE-FR SO-OHM CONNECTOR-RF BNC FEM SGL-HOLE-FR SO-OHM	28480 28480	1250-0102 1250-0102
J13- J23	1250-1295	9	11	CONNECTOR-RF SMA M UNMTD 50-OHM (OPTION 140; REAR PANEL CONNECTORS)	28480	1250-1295
				(OFIZON 190, RGAR FAMEL CONNECTIONS)		

^{*}Indicates factory selected value

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number	CD	Qty	Description	Mfr Code	Mfr Part Number
					<u> </u>	
	!					
				This page intentionally left blank.		
				anno pogo an convacanta acar omerano		
					:	

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number	CD	Qty	Description	Mfr Code	Mfr Part Number
MP1 MP2 MP3 MP4 MP5	5060-9835 5060-9847 5060-9876 5060-9876 5060-9804	04993	1 1 2 2	COVER-TOP ASSY COV-BOTTOM ASSY COVER SIDE COVER SIDE STRAP HANDLE 18 IN.	28480 28480 28480 28480 28480 28480	5060-9835 5060-9847 5060-9876 5060-9876 5060-9876 5060-9804
MP6 MP7 MP8 MP9 MP10	5060-9804 5040-7220 5040-7220 5040-7219 5040-7219	3 1 1 8 8	2	STRAP HANDLE 18 IN. STRAP, HANDLE, CAP-REAR STRAP, HANDLE, CAP-REAR STRAP, HANDLE, CAP-FRONT STRAP, HANDLE, CAP-FRONT	28480 28480 28480 28480 28480 28480	5060-9804 5040-7220 5040-7220 5040-7219 5040-7219
MP11 MP12 HP13 HP14 HP15	5040-7201 5040-7201 5040-7201 5040-7201 1460-1345	8 8 8 5	4	FOOT(STANDARD) FOOT(STANDARD) FOOT(STANDARD) FOOT(STANDARD) TILT STAND SST	28480 28480 28480 28480 28480 28480	5040-7201 5040-7201 5040-7201 5040-7201 1460-1345
MP16 MP17 MP18 MP19 MP20	1480 - 1345 5040 - 7221 5040 - 7221 5040 - 7221 5040 - 7221	5 2 2 2 2 2	4	TILT STAND SST FOOT, REAR FOOT, REAR FOOT, REAR FOOT, REAR	28480 28480 28480 28480 28480	1460 - 1345 5040 - 7221 5040 - 7221 5040 - 7221 5040 - 7221
MP21 MP22 MP23 MP24 MP25	2360-0195 2360-0195 2360-0195 2360-0195 2680-0118	00005	4	SCREW-MACH 6-32 .312-IN-LG PAN-HD-POZI SCREW-MACH 6-32 .312-IN-LG PAN-HD-POZI SCREW-MACH 6-32 .312-IN-LG PAN-HD-POZI SCREW-MACH 6-32 .312-IN-LG PAN-HD-POZI SCREW-MACH 10-32 .5-IN-LG 82 DEG	28480 28480 28480 28480 00000	2360-0195 2360-0195 2360-0195 2360-0195 ORDER BY DESCRIPTION
MP26 MP27 MP28 MP29 MP30	2680-0118 2680-0118 2680-0118 11729-00028 11729-00028	5 5 1 1	2	SCREW-MACH 10-32 .5-IN-LG 92 DEG SCREW-MACH 10-32 .5-IN-LG 92 DEG SCREW-MACH 10-32 .5-IN-LG 92 DEG MAGNETIC SHIELD MAGNETIC SHIELD	00000 00000 00000 28480 28480	ORDER SY DESCRIPTION ORDER SY DESCRIPTION ORDER SY DESCRIPTION 11729-00028 11729-00028
MP31 MP32-	11729-00011	2	1	COVER INSULATOR NOT ASSIGNED	28480	11729-00011
MP60						
		:				

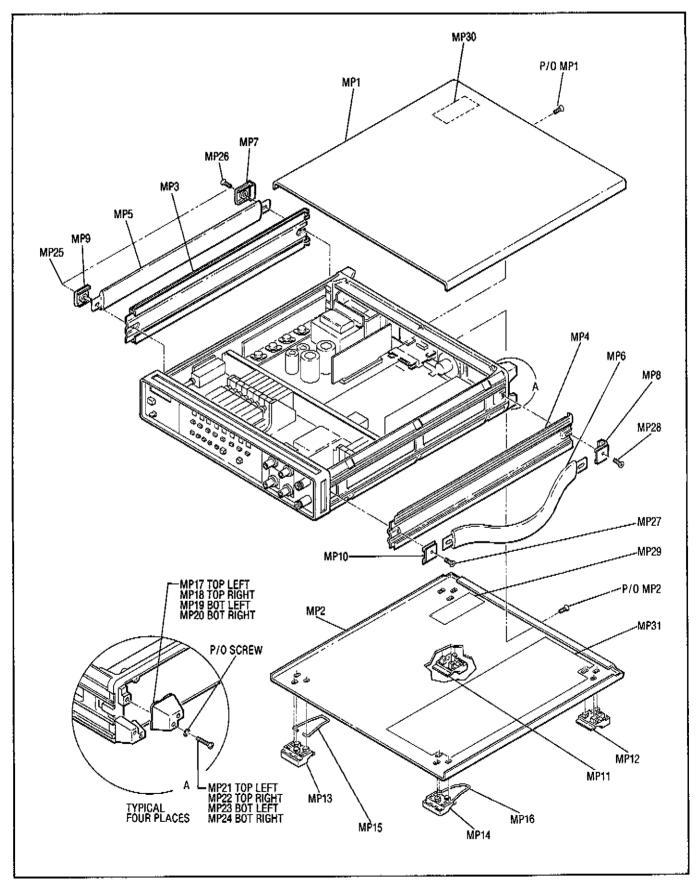


Figure 6-1. External Mechanical Parts

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number	CD	Qty	Description	Mfr Code	Mfr Part Number
11751 11762 11763 11764 11765	0515-0055 0515-0055 0515-0055 0515-0055	88088	19	SCREW-MACH M3 X 0.5 6MM-LG PAN-HD SCREW-MACH M3 X 0.5 6MM-LG PAN-HD	28480 28480 28480 28480 28480 28480	0515-0055 0515-0055 0515-0055 0515-0055 0515-0055
MP66 MP67 MP68 MP69- MP76	0815-0055 0815-0055 0615-0055 2190-0003	8 8 8		SCREW-MACH M3 X 0.5 6MM-LG PAN-HD SCREW-MACH M3 X 0.5 6MM-LG PAN-HD SCREW-MACH M3 X 0.5 6MM-LG PAN-HD WASHER-LK HLCL NO. 4 .115-IN-ID	28480 28480 28480 28480	0515-0055 0515-0055 0515-0055 2190-0003
MP77 MP78 MP79 MP80 MP81	3050-0105 3050-0105 3050-0105 3050-0105 3050-0105	0 66666		WASHER-FL MTLC NO. 4 .125-IN-ID	28480 28480 28480 28480 28480	3050-0105 3050-0105 3050-0105 3050-0105 3050-0105
MP\$2 MP\$3 MP\$4 MP\$5 MP\$6-	3050-0105 3050-0105 3050-0105	6 6 6		WASHER-FL MTLC NO. 4 .125-IN-ID WASHER-FL MTLC NO. 4 .125-IN-ID WASHER-FL MTLC NO. 4 .125-IN-ID NOT ASSIGNED	28480 28480 28480	3050-0105 3050-0105 3050-0105
MP89 MP90 MP91 MP92 MP93 MP94	0515-0076 3050-0105 3050-0105 3050-0105 3050-0105	3 66666	4	SCREW-MACH M3 X 0.5 BMM-LG 90-DEG-FLH-HD WASHER-FL MTLC NO. 4 .125-IN-ID 28480 28480 28480 28480 28480 28480 28480	0515-0076 3050-0105 3050-0105 3050-0105 3050-0105 3050-0105	
ମନ୍ତର ମନ୍ତର ମନ୍ତମ ମନ୍ତର ମନ୍ତର	2190-0003 2190-0003 2190-0003 2190-0003 2190-0003	600000		WASHER-LK HLCL NO. 4 .115-IN-ID	28480 28480 28480 28480 28480	2190-0003 2190-0003 2190-0003 2190-0003 2190-0003
MP100 MP101 MP102 MP103 MP104	0515-0055 0515-0055 0515-0055 0515-0055 0515-0055	8888		SCREW-MACH M3 X 0.5 6MM-LG PAN-HD SCREW-MACH M3 X 0.5 6MM-LG PAN-HD	28480 28480 28480 28480 28480 28480	0515-0055 0515-0055 0515-0055 0515-0055 0516-0055
MP105 MP106 MP107 MP108 [†] MP109	11729-20030 11729-20071 11729-20020 11729-20099 5001-0438	7 6 5 8 7	1 1 1 1 2	FRAME REAR MOD FRONT FRAME SIDE STRUT LEFT SIDE STRUT RIGHT TRIM: SIDE	28480 28480 28480 28480 28480	11729-20030 11729-20071 11729-20020 11729-20099 5001-0438
MP110 MP111 MP112 MP113 [†] MP114	\$001-0438 \$040-7202 11729-00021 11729-00055 2510-0195		1 1 1 4	TRIM:SIDE TRIM, TOP SUPPORT STRUT DECK MAIN SCREW-MACH 8-32 .375-IN-LG 100 DEG	28480 28480 28480 28480 28480 28480	5001-0438 5040-7202 11729-06021 11729-06055 2510-0195
MP115 MP116 MP117 MP118 MP119	2510-0195 2510-0195 2510-0195 2510-0192 2510-0192	99966	4	SCREW-MACH 8-32 .375-IN-LG 100 DEG SCREW-MACH 8-32 .375-IN-LG 100 DEG SCREW-MACH 8-32 .375-IN-LG 100 DEG SCREW-MACH 8-32 .25-IN-LG 100 DEG SCREW-MACH 8-32 .25-IN-LG 100 DEG	28480 28480 28480 00000 00000	2510-0195 2510-0195 2510-0195 ORDER BY DESCRIPTION ORDER BY DESCRIPTION
MP120 MP121 MP122- MP139	2510-0192 2510-0192	6		SCREW-MACH 8-32 .25-IN-LG 100 DEG SCREW-MACH 8-32 .25-IN-LG 100 DEG NOT ASSIGNED	00000	ORDER BY DESCRIPTION ORDER BY DESCRIPTION

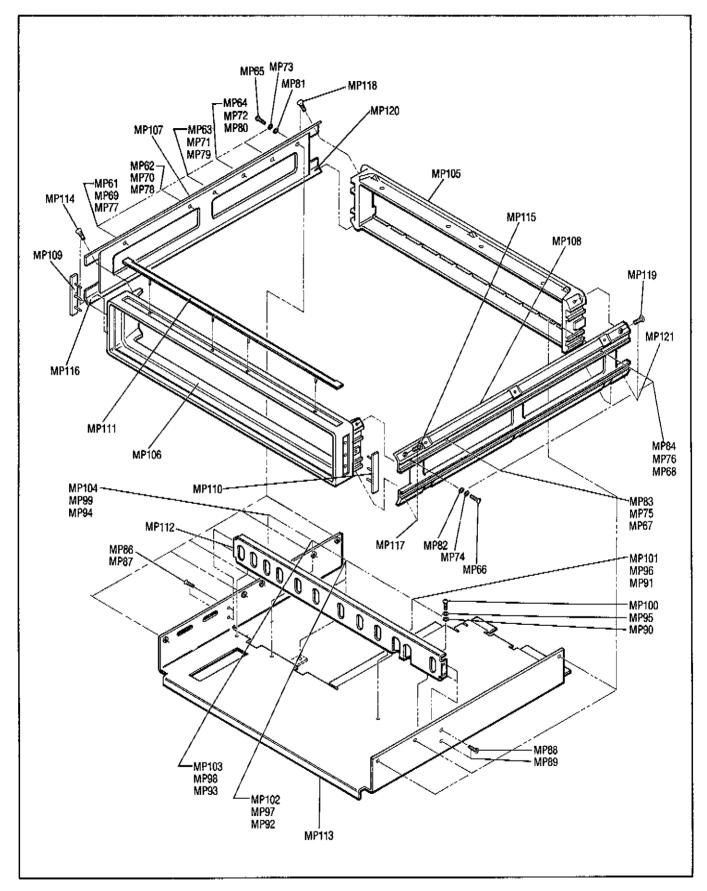


Figure 6-2. Chassis Parts

Table 6-2, Replaceable Parts

Reference Designation	HP Part Number	CD	Qty	Description	Mfr Code	Mfr Part Number
MP140 - MP151 MP152 MP153	0515-0219 11729-20044 11729-20044		12 2	SCREW-MACH M3 X 0.5 6MM-LG 90-DEG-FLH-HD SPACER DECK SUP SPACER DECK SUP	00000 28480 28480	ORDER BY DESCRIPTION 11729-20044 11729-20044
MP154- MP157	2190-0068	5	9	WASHER-LK INTE T 1/2 IN .505-IN-ID	26480	2190-0068
MP158 MP159-	2950-0132	6	2	NUT-HEX-DBL-CHAM 7/16-28-THD .094-IN-THK	00000	ORDER BY DESCRIPTION
MP162 MP163 MP164	2950-0054 2190-0104 2190-0104	1 0 0	9 2	NUT-HEX-DOL-CHAM 1/2-28-THD .125-IN-THK WASHER-LK INTL T 7/16 IN .439-IN-ID WASHER-LK INTL T 7/16 IN .439-IN-ID	00000 28480 28480	ORDER BY DESCRIPTION 2190-0104 2190-0104
MP165 MP166 MP167 MP168 MP169	2950-0132 0515-0443 0515-0443 2190-0017 2190-0017	8 8 4 4	3	NUT-HEX-DBL-CHAM 7/16-28-THD .094-IN-THK SCREW-MACH M4 X 0.7 20MM-LG PAN-HD SCREW-MACH M4 X 0.7 20MM-LG PAN-HD WASHER-LK HLCL NO. 8 .168-IN-ID WASHER-LK HLCL NO. 8 .168-IN-ID	00000 28480 28480 28480 28480	ORDER BY DESCRIPTION 0515-0443 0515-0443 2180-0017 2190-0017
MP170 MP171 MP172 MP173	3050-0139 3050-0139 3050-0105 11729-00027 11729-00030		1	WASHER-FL MTLC NO. 8 .172-IN-ID WASHER-FL MTLC NO. 8 .172-IN-ID WASHER-FL MTLC NO. 4 .125-IN-ID FRONT PANEL RIGHT DRESS PANEL RIGHT SIDE (OPTION 140)	28480 28480 28480 28480 28480 28480	3050-0139 3050-0139 3050-0105 11729-00027 11729-00030
MP174 MP175 MP176 MP177 MP178	3050-0105 3050-0105 2190-0003 2190-0003 2190-0003	66666		WASHER-FL MTLC NO. 4 .125-IN-ID WASHER-FL MTLC NO. 4 .125-IN-ID WASHER-LK HLCL NO. 4 .115-IN-ID WASHER-LK HLCL NO. 4 .115-IN-ID WASHER-LK HLCL NO. 4 .115-IN-ID	28480 28480 28480 28480 28480 28480	3050-0105 3050-0105 2190-0003 2190-0003 2190-0003
MP179 MP180 MP181 MP182 MP183	0515-0054 0515-0054 0515-0054 0510-1148 0510-1148	7 7 7 2	8	SCREW-MACH M3 X 0.5 10MM-LG PAN-HD SCREW-MACH M3 X 0.5 10MM-LG PAN-HD SCREW-MACH M3 X 0.5 10MM-LG PAN-HO RETAINER-PUSH ON KB-TO-SHFT EXT RETAINER-PUSH ON KB-TO-SHFT EXT	28480 28480 28480 28480 28480	0515-0054 0515-0054 0515-0054 0510-1148 0510-1148
MP184 MP185 MP186 MP187 MP188	0515-0214 0515-0214 2190-0654 2190-0654 5040-6888	1 5 5 5	2	SCREW-MACH M2 X 0.4 6MM-LG PAN-HD SCREW-MACH M2 X 0.4 6MM-LG PAN-HD WASHER-LK HLCL 2.0 MM 2.1-MM-ID WASHER-LK HLCL 2.0 MM 2.1-MM-ID LIGHT PIPES	00000 00000 28480 28480 28480	ORDER BY DESCRIPTION ORDER BY DESCRIPTION 2190-0654 2190-0654 5040-6888
MP189- MP193 MP194 MP195-	5040-6888 11729-00016		1	LIGHT PIPES INSERT FILM	28480 28480 28480	5040-6888 11729-00016 0510-1148
MP200 MP201-	0510-1148	2		RETAINER-PUSH ON KB-TO-SHFT EXT	20400	0010-1140
MP205 MP206*	0515-0054	7		SCREW-MACH M3 X 0.5 10MM-LG PAN-HD	28480	0515-0054
MP210 MP211-	2190-0003	8		WASHER-LK HLCL NO. 4 .115-IN-IO	28480	2190-0003
mP215	3050-0105	6		WASHER-FL MILC NO. 4 .125-IN-ID	28480	3050-0105
MP216 MP217 MP218 MP219 MP220	11729-00002 11729-00010 11729-20042 7120-1254 11729-00022	1 1 1	1 1 1 1	SUB PANEL FRI LS SUB PANEL FRI B WINDOW, FRONT NAMEPLATE .312-IN-WO .54-IN-LG AL FRY PNL CENTER B	28480 28480 28480 28480 28480 28480	11729-00002 11729-00010 11729-20042 7120-1254 11729-00022
MP221 MP222 MP223-	11729-00004 11729-00003		1	SUB PANEL CENTER SUB PANEL FRT RB	28480 28480	1:729-00004 11729-00003
MP285				NOT ASSIGNED		

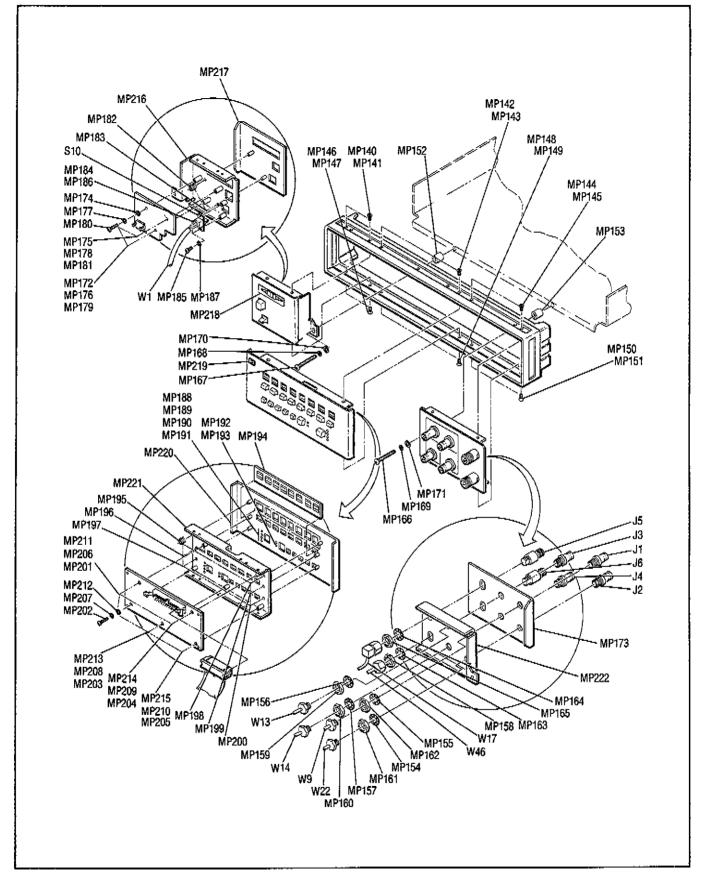


Figure 6-3. Front Panel Parts

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number	Ç D	Qty	Description	Mfr Code	Mfr Part Number
MP266 MP267 MP268 MP269	11729-00017 11729-00049 0515-0145 0515-0145 2200-0121	8 6 7 4	1 1 2	PANEL REAR PANEL REAR PANEL REAR (OPTION 140) SCREW-MACH M3 X 0.5 8MM-LG 90-DEG-FLM-HD SCREW-MACH M3 X 0.5 8MM-LG 90-DEG-FLM-HD SCREW-MACH 4-40 1.125-IN-LG PAN-HD-POZI	28480 28480 00000 00000	11729-00017 11729-00049 ORDER BY DESCRIPTION ORDER BY DESCRIPTION ORDER BY DESCRIPTION
MP270 MP271 MP272 MP273 MP274	2200-0121 2200-0121 2200-0121 0515-0055 0515-0055	4 4 4 8 8		SCREW-MACH 4-40 1.125-IN-LG FAN-HD-POZI SCREW-MACH 4-40 1.125-IN-LG FAN-HD-POZI SCREW-MACH 4-40 1.125-IN-LG PAN-HD-POZI SCREW-MACH M3 X 0.5 6MM-LG PAN-HD SCREW-MACH M3 X 0.5 6MM-LG FAN-HD	00000 00000 00000 28480 28480	ORDER BY DESCRIPTION ORDER BY DESCRIPTION ORDER BY DESCRIPTION 0515-0055 0515-0055
MP275 MP276 MP277 MP278 MP279	0515-0055 0515-0055 0515-0055 0515-0055 0515-0104	8 8 8 8		SCREW-MACH MS X 0.5 6MM-LG PAN-HD SCREW-MACH MS X 0.5 8MM-LG PAN-HD	28480 28480 28480 28480 28480	0515-0055 0515-0055 0515-0055 0515-0055 0515-0104
MP280 MP281 MP282 MP283 MP284	0515-0104 0590-0076 0590-0078 0590-0076 0590-0076	8 1 1 1	5	SCREW-MACH M3 X 0.5 8MM-LG PAN-HD NUT-HEX-PLSTC LKG 4-40-THD .143-IN-THK NUT-HEX-PLSTC LKG 4-40-THD .143-IN-THK NUT-HEX-PLSTC LKG 4-40-THD .143-IN-THK NUT-HEX-PLSTC LKG 4-40-THD .143-IN-THK	28480 28480 28480 28480 28480	0515-0104 0590-0078 0590-0076 0590-0076 0590-0076
MP285 MP286 MP287 MP288 MP289	2190-0068 2190-0068 2190-0068 2190-0068 2190-0068	கைகைக		WASHER-LK INTL T 1/2 IN .505-IN-ID WASHER-LK INTL T 1/2 IN .505-IN-ID	28480 28480 28480 28480 28480	2190-0068 2190-0068 2190-0068 2190-0068 2190-0068
MP290 MP291 MP292 MP293 MP294	6960-0006 6960-0006 11729-80001 11729-80001 11729-80001		2	PLUG-HOLE DOME-HD FOR .25-D-HOLE STL PLUG-HOLE DOME-HD FOR .25-D-HOLE STL SPACER FAN SPACER FAN SPACER FAN	28480 28480 28480 28480 28480	6960-0006 6960-0006 11729-80001 11729-80001 11729-80001
MP295 MP296 MP297 MP298 MP299	11729-80001 0535-0004 0535-0004 1200-1103 1200-1103	89933	3	SPACER FAN NUT-HEX DBL-CHAM M3 X 0,5 2.4MM-THK NUT-HEX DBL-CHAM M3 X 0,5 2.4MM-THK SHIM (FOR HP-IB ADDRESS SWITCH) SHIM (FOR HP-IB ADDRESS SWITCH)	28480 00000 00000 28480 28480	11729-80001 ORDER BY DESCRIPTION ORDER BY DESCRIPTION 1200-1103 1200-1103
MP300 MP301 MP302 MP303 MP304	1200-1103 1200-1104 11729-20045 2950-0054 2950-0054	3 4 4 1	1	SHIM (FOR HP-IB ADDRESS SWITCH) BEXEL-CONNECTOR(FOR HPIB ADDRESS SWITCH) FAN GUARD NUT-HEX-DBL-CHAM 1/2-26-THD .125-IN-THK NUT-HEX-DBL-CHAM 1/2-28-THD .125-IN-THK	28480 28480 28480 00000 00000	1200-1103 1200-1104 11729-20045 ORDER BY DESCRIPTION ORDER BY DESCRIPTION
MP305 MP306 MP307 MP308 MP309	2950-0054 2950-0054 2190-0003 2190-0003 2190-0003	1 1 8 8 8		NUT-HEX-DBL-CHAM 1/2-28-THD .125-IN-THK NUT-HEX-DBL-CHAM 1/2-28-THD .125-IN-THK WASHER-LK HLCL NO. 4 .115-IN-ID WASHER-LK HLCL NO. 4 .115-IN-ID WASHER-LK HLCL NO. 4 .115-IN-ID	00000 00000 28480 28480 28480	ORDER BY DESCRIPTION ORDER BY DESCRIPTION 2190-0003 2190-0003 2190-0003
MP310 MP311 MP312-	3050-0105 3050-0105	8		WASHER-FL MTLC NO. 4 .125-IN-ID WASHER-FL MTLC NO. 4 .125-IN-IO	28480 28480	3050-0105 3050-0105
MP318 MP319	2190-0003 2950-0054	8		WASHER-LK HLCL NO. 4 .115-IN-ID NUT-HEX-DBL-CHAM 1/2-28-THD .125-IN-THK	28480 00000	2190-0003 ORDER BY DESCRIPTION
мрээо- мрэээ				NOT ASSIGNED		

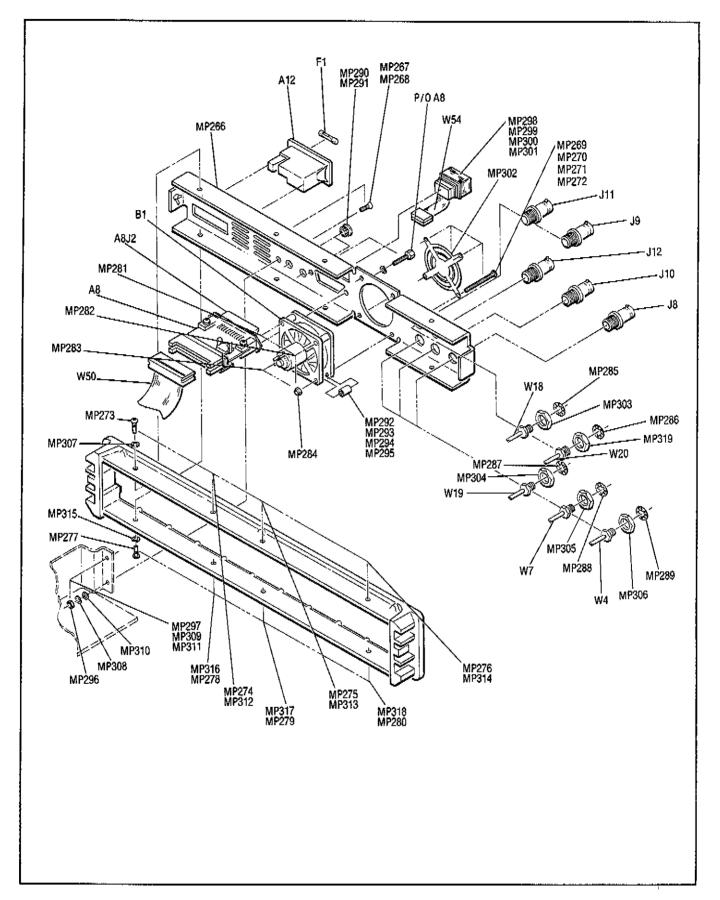


Figure 6-4. Rear Panel Parts

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number	CD	Qty	Description	Mfr Code	Mfr Part Number
MP360 MP361 MP362 MP363 MP364	0590-0075 0590-0075 2200-0129 0590-0076 2190-0003	0 0 2 1 8	2	NUT-CAP 4-40-THD ,25-IN-THK .25-A/F BRS NUT-CAP 4-40-THD ,25-IN-THK .25-A/F BRS SCREW-MACH 4-40 2-IN-LG PAN-HD-POZI NUT-HEX-PLSTC LKG 4-40-THD .143-IN-THK WASHER-LK HLCL NO. 4 ,115-IN-ID	00000 00000 00000 28480 28480	ORDER BY DESCRIPTION ORDER BY DESCRIPTION ORDER BY DESCRIPTION 0590-0076 2190-0003
MP365 MP368 MP367 MP368 MP369	2190-0003 2190-0017 2190-0017 2190-0017 2190-0017	8 4 4 4 4		WASHER-LK HLCL NO. 4 .115-IN-ID WASHER-LK HLCL NO. 8 .168-IN-ID WASHER-LK HLCL NO. 8 .168-IN-ID WASHER-LK HLCL NO. 8 .168-IN-ID WASHER-LK HLCL NO. 8 .168-IN-ID	28480 28480 28480 28480 28480	2190-0003 2190-0017 2190-0017 2190-0017 2190-0017
MP370 MP371 MP372 MP373 MP374	2190-0017 2190-0017 3050-0660 3050-0660 3050-0660	4 4 8 8 6	6	WASHER-LK HLCL NO. 8 .168-IN-ID WASHER-LK HLCL NO. 8 .168-IN-ID WASHER-FL MTLC NO. 8 .182-IN-ID .5-IN-OD WASHER-FL MTLC NO. 8 .182-IN-ID .5-IN-OD WASHER-FL MTLC NO. 8 .182-IN-ID .5-IN-OD	28480 28480 28480 28480 28480 28490	2190-0017 2190-0017 3050-0660 3050-0660 3050-0660
MP375 MP376 MP377 MP378 MP379	3050-0860 3050-0860 3050-0860 0515-0053 0515-0053	88866	5	WASHER-FL MTLC NO. 8 .182-IN-ID .5-IN-OD WASHER-FL MTLC NO. 8 .182-IN-ID .5-IN-OD WASHER-FL MTLC NO. 8 .182-IN-ID .5-IN-OD SCREW-MACH M4 X 0.7 10MM-LG PAN-HD SCREW-MACH M4 X 0.7 10MM-LG PAN-HD	28480 28480 28480 28480 28480	3050-0660 3050-0660 3050-0660 0515-0053 0515-0053
MP380 MP381 - MP384	0515-0053	6		SCREW-MACH M4 X 0.7 10MM-LG PAN-HD	28480	0515-0053
MP385 MP386	0515-0443 0515-0053	8 6		SCREW-MACH M4 X 0.7 20MM-LG PAN-HD SCREW-MACH M4 X 0.7 10MM-LG PAN-HD	28480 28480	0515-0443 0515-0053
MP387 MP388 MP389 MP390 MP391	0515-0053 0570-1215 11729-20043 11729-20043 11729-20048		† 2	SCREW-MACH M4 X 0.7 10MM-LG PAN-HD THD-ROD 4-40 UNC-2A 12-IN-LG BRS SUITCH SUPPORT (FOR S1 TO S7) SUITCH SUPPORT (FOR S1 TO S7)	28480 28480 28480 28480 28480	0515-0053 0570-1215 11729-20043 11729-20043 11729-20046
MP392 MP393 MP394- MP429	11729-20029 11729-20029		2	SUPPORT COAX SWITCH (FOR \$8 AND \$9) SUPPORT COAX SWITCH (FOR \$8 AND \$9) NOT ASSIGNED	28480 28480	11729-20029 11729-20029
					 	

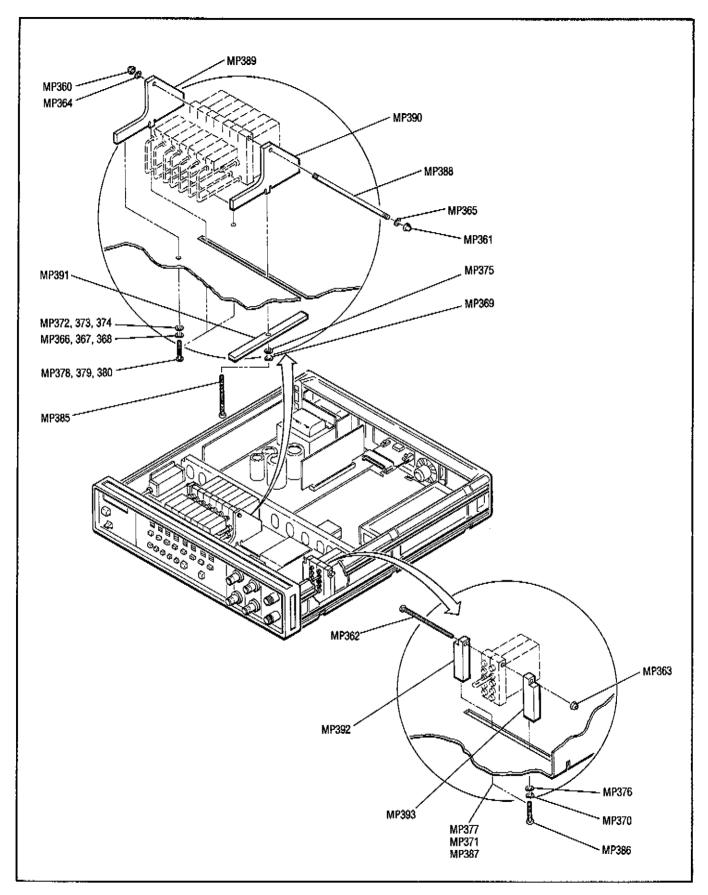


Figure 6-5. Switch Assembly Mechanical Parts

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number	CD	Qty	Description	Mfr Code	Mfr Part Number
MP430 MP431 MP432 MP433 MP434	11729-20021 11729-00020 0515-0064 2190-0003 0515-0054	6 3 9 8 7	1 1 1	HEAT SINK DUCT AIR SCREW-MACH M3 X 0.5 16MM-LG PAN-HD WASHER-LK NLCL NO. 4 .115-IN-ID SCREW-MACH M3 X 0.5 10MM-LG PAN-HD	28480 28480 28480 28480 28490 28490	11729-20021 11729-00020 0515-0064 2190-0003 0515-0054
nP435 nP436 nP437 nP438 nP439	0515-0054 0515-0054 0515-0054 0515-0054 0515-0054	7 7 7 7 7		SCREW-MACH M3 X 0.5 10MM-LG PAN-HD SCREW-MACH M3 X 0.5 10MM-LG PAN-HD	28480 28480 28480 28480 28480	0515-0054 0515-0054 0515-0054 0515-0054 0515-0054
MP440 MP441 MP442 MP443 MP444	0515-0054 0515-0054 0515-0054 0515-0054 0515-0054	7 7 7 7		SCREW-MACH M3 X 0.5 10MM-LG PAN-HD SCREW-MACH M3 X 0.5 10MM-LG PAN-HD	28480 28480 28480 28480 28480	0515-0054 0515-0054 0515-0054 0515-0054 0515-0054
MF445 MP446 MP447 MP448 MP449	0515-0104 0515-0104 0515-0208 0515-0208 0515-0104	88339		SCREW-MACH M3 X 0.5 8MM-LG PAN-HD SCREW-MACH M3 X 0.5 8MM-LG PAN-HD SCREW-MACH M3 X 0.5 14MM-LG PAN-HD SCREW-MACH M3 X 0.5 14MM-LG PAN-HD SCREW-MACH M3 X 0.5 8MM-LG PAN-HD	28480 28480 28480 28480 28480	0515-0104 0515-0104 0515-0208 0515-0208 0515-0104
nP450 MP451 MP452 MP453 MP454	0515-0104 0515-0104 0515-0104 3050-0105 0515-0104	8 8 6 8		SCREW-MACH M3 X C.5 8MM-LG PAN-HD SCREW-MACH M3 X C.5 8MM-LG PAN-HD SCREW-MACH M3 X C.5 8MM-LG PAN-HD WASHER-FL MTLC NC. 4 .125-IN-ID SCREW-MACH M3 X C.5 8MM-LG PAN-HD	28480 28480 28480 28480 28480	0515-0104 0515-0104 0515-0104 3050-0105 0515-0104
MP455 MP456- MP460 MP461* MP462*	0515-0104 0515-0104 0515-0085 0515-0085	8 8 4 4	4	SCREW-MACH M3 X 0.5 8MM-LG PAN-HD SCREW-MACH M3 X 0.5 8MM-LG PAN-HD SCREW-MACH M4 X 0.7 10MM-LG SCREW-MACH M4 X 0.7 10MM-LG	28480 28480 28480 28480	0515-0104 0515-0104 0515-0085 0515-0085
MP463† MP464† MP485 MP486 MP467	0515-0085 0515-0085 3050-0105 3050-0105 3050-0105	4 4 6 6		SCREW-MACH M4 X 0.7 10MM-LG SCREW-MACH M4 X 0.7 10MM-LG WASHER-FL MTLC NO. 4 .125-IN-ID WASHER-FL MTLC NO. 4 .125-IN-ID WASHER-FL MTLC NO. 4 .125-IN-ID	28480 28480 28480 28480 28480	0515-0085 0515-0085 3050-0105 3050-0105 3050-0105
112458 112459 112470 112471 - 112496	3050-0105 3050-0105 3050-0105 2190-0003	6 6		WASHER-FL MTLC NO. 4 .125-IN-ID WASHER-FL MTLC NO. 4 .125-IN-ID WASHER-FL MTLC NO. 4 .125-IN-ID	28480 28480 28480 28480	3050-0105 3050-0105 3050-0105 2190-0003
112497 112498 112499 112500 112501	3050-0105 3050-0105 2190-0003 2190-0003 2200-0139	6 8 8 4		WASHER-FL MTLC NO. 4 .125-IN-ID WASHER-FL MTLC NO. 4 .125-IN-ID WASHER-LK HLCL NO. 4 .115-IN-ID WASHER-LK HLCL NO. 4 .115-IN-ID SCREW-MACH 4-40 .25-IN-LG PAN-HO-POZI	28480 28480 28480 28480 28480	3050-0105 3050-0105 2190-0003 2190-0003 2200-0139
MP502 MP503 MP504 MP505 MP506	2200-0139 5040-0170 5040-0170 0515-0104 2190-0003	4 8 6 8 8	2	SCREW-MACH 4-40 .25-IN-LG PAN-HD-POZI GUIDE:PLUG-IN PC BOARD GUIDE:PLUG-IN PC BOARD SCREW-MACH M3 X 0.5 8MM-LG PAN-HD WASHER-LX HLCL NO. 4 .115-IN-ID	28480 28480 28480 28480 28480	2200-0139 5040-0170 5040-0170 0515-0104 2190-0003
MP507 MP508- MP559	3050-0105	6		WASHER-FL MTLC NO. 4 .125-IN-ID NOT ASSIGNED	28480	3050-0105

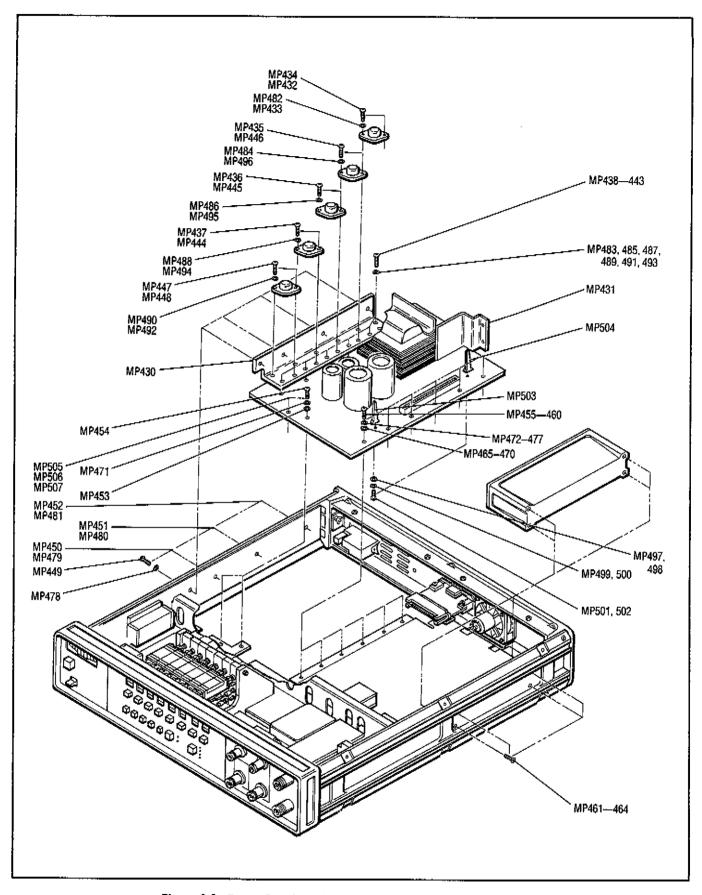


Figure 6-6. Power Supply and Low Noise Amplifier Mechanical Parts

Table 6-2. Replaceable Parts

MPS80	Reference Designation	HP Part (CD	Qty Description	Mfr Code	Mfr Part Number
	MPS60 MPS61 MPS62 MPS63 MPS64 MPS65 MPS66 MPS67 MPS69 MPS70 MPS70 MPS71 MPS72 MPS73 MPS74 MPS74 MPS75 MPS75 MPS75	0515-0104 0515-0104 0515-0104 0515-0104 0515-0104 0515-0104 2190-0003 2190-0003 2190-0003 2190-0003 2190-0003 3050-0105 3050-0105	ගහ ආභාගත කෙසෙක්ර සස්සෙස	SCREW-MACH M3 X 0.5 8MM-LG PAN-HO WASHER-LK HLCL NO. 4 .115-IN-ID WASHER-LK HLCL NO. 4 .125-IN-ID WASHER-FL MTLC NO. 4 .125-IN-ID	28480 224490 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480	0515-0104 0515-0104 0515-0104 0515-0104 0515-0104 2190-0003 2190-0003 2190-0003 2190-0003 2190-0003 2190-0003 2190-0005 3050-0105 3050-0105 3050-0105

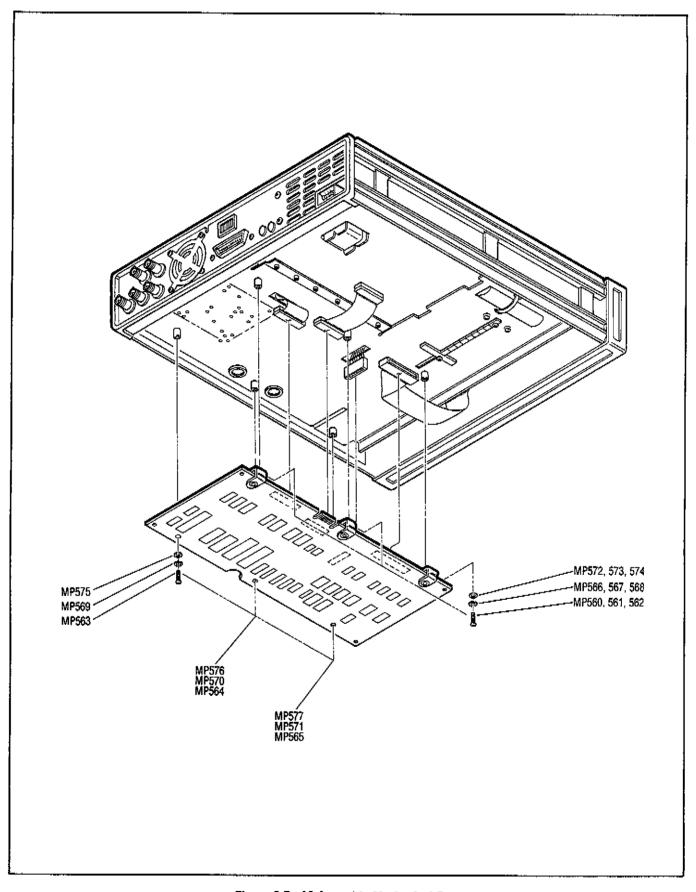


Figure 6-7. A9 Assembly Mechanical Parts

Table 6-2. Replaceable Parts

B-4	Lupperd	_		Table 6 2. Replaceable : arts		Γ
Reference Designation		D	Qty	Description	Mfr Code	Mfr Part Number
S1 S2 S3 S4 S5	08672-60142 08672-60142 08672-60142 08672-60142	1	9	SWITCH ASSEMBLY 5PT SWITCH ASSEMBLY 5PT SWITCH ASSEMBLY 5PT SWITCH ASSEMBLY 5PT SWITCH ASSEMBLY 5PT	28480 28480 28480 28480 28480	08672-60142 08672-60142 08672-60142 08672-60142 08672-60142
\$8 \$7 \$8 \$9 \$10	08672-60142 08672-60142 08672-60142 08672-60142 3101-2634	1 1 9	1	SWITCH ASSEMBLY SPT SWITCH ASSEMBLY SPT SWITCH ASSEMBLY SPT SWITCH ASSEMBLY SPT SWITCH-RKR SUBMIN DPDT SA 250VAC SPD-LUG (PART OF WI)	28480 28480 28480 28480 28480 28480	08672-60142 08672-80142 08672-60142 08672-50142 3101-2634
\$11	3101-1973	7	1	SWITCH-SL 7-1A DIP-SLIDE-ASSY .1A SOVDC (HP-IB ADDRESS SWITCH)	28480	3101-1973
ΤI	9100-4333 0515-0148 2190-0017 3050-0139	3 8 4 6	1 4 14 8	TRANSFORMER-POWER SCREW-MACH M4 X 0.7 SOMM-LS PAN-HD (USED TO MOUNT T1) WASHER-LK HLCL NO. 8 .168-IN-ID (USED TO MOUNT T1) WASHER-FL MTLC NO. 8 .172-IN-ID (USED TO MOUNT T1)	28480 28480 28480 28480	9100-4333 0515-0146 2190-0017 3050-0139
U1 U2 U3 U4 U5	1826-0169 1826-0677 1826-0203 1826-0423 0955-0181 0515-0054	508437	1 1 1 1	IC V RGLTR TO-3 IC-LM338 IC 7815 V RGLTR TO-3 IC V RGLTR TO-3 MICROWAVE MIXER SCREW-MACH M3 X 0.5 10MM-LG PAN-MD (USEO TO MOUNT U5) WASHER-FL MTKC NO. 4 .125-IN-ID	27014 28480 07263 27014 28480 28480	LM320K-15 1826-0677 7815KC LM317K 0955-0181 0515-0054
U6	2190-0003 0535-0004 0955-0176 0515-0065 2190-0003	8 8 80 8	10 1 4	(USEO TO MOUNT US) WASHER-LK HLCL NO. 4 .115-IN-ID (USED TO MOUNT US) NUT-HEX DEL-CHAM M3 X 0.5 2.4MM-THK (USED TO MOUNT U5) POWER-SPLITTER 2-WAY WITH 50 OHM SMA SCREW-MACH M3 X 0.5 25MM-LG PAN-HD (USED TO MOUNT U5) WASHER-LK HLCL NO. 4 .115-IN-IO	28480 00000 28480 28480 28480	2190-0003 ORDER BY DESCRIPTION 0955-0176 0515-0065 2190-0003
ט7	0955-0177 0515-0065 2190-0003	7 0 8	1	(USED TO MOUNT U6) MIXER (PHASE DETECTOR) SCREW-MACH M3 X 0.5 25MM-LG PAN-HD (USED TO MOUNT U7) WASHER-LK HLCL NO. 4 .115-IN-ID (USED TO MOUNT U7)	28480 28480 28480	0955-0177 0515-0065 2190-0003
u1	11729-60031 1400-0031 0515-0054 2190-0003 3050-0105 0535-0004	287869	1 2	CABLE ASSEMBLY (INCLUDES S10 & A12) CLAMP-CABLE .375-DIA .5-WD NYL SCREW-MACH M3 X 0.5 10MM-LG PAN-HD WASHER-LK HLCL NO. 4 .115-IN-ID WASHER-FL MTLC NO. 4 .125-IN-ID NUT-HEX DBL-CHAM M3 X 0.5 2.4MM-THK	28480 28480 28480 28480 28480 00000	11729-60031 1400-0031 0515-0054 2190-0003 3050-0105 ORDER BY DESCRIPTION
พ2 พ3 พ4 พ5 พธ	11729-60028 11729-60020 11729-60024 11729-60055 11729-60036	0	1 1 1	CABLE ASSEMBLY CABLE ASSEMBLY CABLE 640 CABLE ASSEMBLY (OPT. 130 ONLY) CABLE ASSEMBLY	28480 28480 28480 28480 28480	11729-60028 11729-60020 11729-60024 11729-60055 11729-60036
ษ7 พธ	11729-60034 11729-20072		1	CABLE ASSEMBLY CABLE ASSEMBLY (SINGLE FILTER OPTIONS; ISOLATOR TO FILTER)	28480 28480	11729-80034 11729-20072
M1¢ Ma	11729-60017 11729-60026		1	CABLE ASSEMBLY	28480 28480	11729-60017 11729-60026
มา 1 มา 2 มา 3 มา 3 มา 4 มา 5	11729-60027 11729-60054 11729-60018 11729-60023 11729-60059	5	1 1 1 1	CABLE ASSEMBLY CABLE ASSEMBLY CABLE ASSEMBLY CABLE ASSEMBLY CABLE ASSEMBLY	28480 28480 28480 28480 28480	11729-60027 11729-60054 11729-60018 11729-60023 11729-60059

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number	CD	Qty	Description	Mfr Code	Mfr Part Number
พ.16 พ.17 พ.18 พ.19 พ.20	11729-60057 11729-60022 11729-60032 11729-60035 11729-60033	1 3 6	\$ 1 1 1	, CABLE ASSEMBLY CABLE ASSEMBLY CABLE ASSEMBLY CABLE ASSEMBLY CABLE ASSEMBLY CABLE ASSEMBLY	28480 28480 28480 28480 28480 28480	11729-60057 11729-60052 11729-60032 11729-60035 11729-60033
W21 W22 W23 W24 W25	11729-60025 11729-20038 11729-20028 08672-20157	3	1 1 1 7	NOT ASSIGNED CABLE ASSEMBLY CABLE ASSY (OPT. 130 ONLY) CABLE ASSEMBLY CABLE ASSEMBLY CABLE ASSEMBLY	28480 28480 28480 28480	11729-80025 11729-20038 11729-20028 08672-20157
₩26 ₩27 ₩28 ₩29 ₩30	08672-20157 11729-20070 8120-1378 1250-1249 11729-60044 1400-0510	5 1 3	7 1 1 1 2	CABLE ASSEMBLY CABLE ASSEMBLY ASSEMBLY-CABLE (POWER CABLE) ADAPTER-COAX RTANG F-SMA M-SMA CABLE ASSY(FOR IF, POWER & LOW NOISE AMP CLAMP-CABLE .15-DIA .82-WD NYL	28480 28480 28480 28480 28480 28480	09672-20157 11729-20070 9120-1378 1250-1249 11729-50044 1400-0510
ฟ31 ฟ32 ฟ33 ฟ34 ฟ35	11729-20070 08672-20157 11729-20070 08672-20157 11729-20070	4	İ	CABLE ASSEMBLY CABLE ASSEMBLY CABLE ASSEMBLY CABLE ASSEMBLY CABLE ASSEMBLY CABLE ASSEMBLY	28480 28480 28480 28480 28480 28480	11729-20070 08672-20157 11729-20070 08672-20157 11729-20070
W36 W37 W38 W39 W40	08872-20157 11729-20070 08672-20157 11729-20070 08672-20157			CABLE ASSEMBLY CABLE ASSEMBLY CABLE ASSEMBLY CABLE ASSEMBLY CABLE ASSEMBLY CABLE ASSEMBLY	28480 28480 28480 28480 28480	08672-20157 11729-20070 08672-20157 11729-20070 08672-20157
641 642 643 644 645	11729-20070 11729-20068	5	1	CABLE ASSEMBLY CABLE ASSEMBLY NOT ASSIGNED NOT ASSIGNED NOT ASSIGNED	28480 28480	11729-20070 11729-20068
พ46 พ47 พ48 พ49	11729-20066 11729-20069 11729-60060	9 2 7	1 1	CABLE ASSEMBLY CABLE ASSEMBLY NOT ASSIGNED CABLE ASSEMBLY	28480 28480 28480	11729-20066 11729-20069 11729-60060
₩50 ₩51	11729-60050	5	1	CABLE ASSEMBLY (HP-IB INTERCONNECT TO MICROPROCESSOR) CABLE ASSY (CABLE FROM MICROPROCESSOR TO	28480 28480	11729-60050 11729-60058
W52	1400-0619 0515-0054 11729-60045 1400-0611	8 7 8 0	5 1 2	SWITCHES) CABLE CLAMP-HFCL .312-QIA .5-WD SCREW-MACH M3 X 0.5 10MM-LG PAN-HD CABLE ASSEMBLY CLAMP-FL-CA 1-WD	28480 28480 28480 06915	1400-0619 0515-0054 11729-60045 CFCC-8
W53		7	1	CABLE ASSEMBLY (FROM MICROPROCESSOR TO FRONT PANEL)	28480	11729-60052
พ54 พ55		6	1	CLAMP-FL-CA 1-WD CABLE ASSEMBLY CABLE ASSEMBLY (OPTION 140: 640MHZ IN)	06915 28480 28480	CFCC-8 11729-60051 11729-80082
พร์6 พร์7	11729-60073	2	1	CABLE ASSEMBLY (OPTION 140; LOOP TEST PORT OUT) CABLE ASSEMBLY (OPTION 140; AUX NOISE)	28480 28480	11729-60077 11729-60073
₩5 8 ₩59	11729-60076		1	CABLE ASSEMBLY (OPTION 140; NOISE SPECTRUM <1MHZ)	28480	11729-80076
₩61	11729-60080	2	;	CABLE ASSEMBLY (OPTION 140; IF OUTPUT) CABLE ASSEMBLY (OPTION 140; 5 TO 1280MHZ IN) CABLE ASSEMBLY (OPTION 140; FREQ-CONT	28480 28480 28480	11729-60081 11729-60080 11729-60075
⊌ 62	11729-60074		,	X-OSC) CABLE ASSEMBLY (OPTION 140; FREQ-CONT	28480	11729-60074
fie3	11729-60078	,	1	DC-FM) CABLE ASSEMBLY (OPTION 140; LOOP TEST	28480	11729-60078
⊍64		8		PORT IN) CABLE ASSEMBLY (OPTION 140; NOISE	28480	11729-60079
W65		١		SPECTRUM =10MHZ) CABLE ASSEMBLY (OPTION 140; MICROWAVE	28480	11729-80079

Table 6-3. Code List of Manufacturers

Mfr Code	Manufacturer Name	Address	Zip Code
03976 50545 00000 01121 01295 02114 04713 06915 07263 13701 24355 24546 25088 27014 28480 30983 32897 58289 72138 75915 79983	BUENLER GEBR NACHFOLSER GIBH NIPPON ELECTRIC CO ANY SATISFACTORY SUPPLIER ALLEN-BRADLEY CO TEXAS INSTE INC SENICOND CHENT DIV FERROXCUBE CORP MOTOROLA SENICONDUCTOR PRODUCTS RICHCO PLASTIC CO FATIGNILO SENICONDUCTOR DIV HEPCO/ELECTRA CORP ANALOS DEVICES INC CORNING GLASS WORKS (BRADFORD) SIEHENS CORP NATIONAL SENICONDUCTOR CORP HEMLETT-PACKARO CO CORPORATE HQ RCA CORP SOLTO STATE DIV HEPCO/ELECTRA CORP BOURNS INC TRIMPOT PROD DIV SPRAGUE ELECTRIC CO ELECTRO MOTIVE CORP LITTELFUSE INC ZIERICK HFG CO	NURNBERG GM TOKYO JP MILWAUKEE WI DALLAS TX SAUGERTIES NY PHOENIX AZ CHICAGO IL MOUNTAIN VIEW CA MINERAL WELLS TX NORWOOD MA BRADFORD PA ISELIN NJ SANTA CLARA CA PALO ALTO CA SOMERVILLE NJ SAN DIEGO CA NORTH ADAMS MA FLORENCE SC DES PLAINES IL MIT KISCO NY	7750 53204 75222 12477 85008 60646 94042 76067 02062 16701 08830 95051 94304 92121 92507 01247 06226 60016 10549

SECTION VII MANUAL CHANGES

7-1. INTRODUCTION

This section contains manual change instructions for backdating this manual for Carrier Noise Test Sets with serial number prefixes lower than 2435A. This section also contains instrument modification suggestions that are recommended to improve the performance or reliability of your Carrier Noise Test Set.

7-2. MANUAL CHANGES

To adapt this manual to your instrument, refer to Table 7-1. Make all of the manual changes listed opposite your instrument's serial number or prefix. The manual changes are arranged in ascending alphabetical order but should be performed in the sequence shown in the table. For example, Change

C should be done before Change B and Change B before Change A.

If your instrument's serial number or prefix is not listed on the title page of this manual or in Table 7-1, it may be documented in a separate MANUAL CHANGES supplement. For more information about serial numbers, refer to INSTRUMENTS COVERED BY MANUAL in Section I.

Table 7-1. Manual Changes by Serial Number

Serial Prefix or Number	Make Manual Changes
2329A	D, C, B, A
2345A	D, C, B
2412A	D, C
2428A	D

MANUAL CHANGES

7-3. MANUAL CHANGE INSTRUCTIONS

CHANGE A

Table 6-3:

A7F1 was originally 2110-0012. However, the part listed in the table is the recommended replacement. Therefore, no manual change is suggested.

Delete A9C39.

A9J3 was originally 1251-5771. However, the part listed in the table is the recommended replacement. Therefore, no manual change is suggested.

Delete A9R17.

Service Sheet 4:

Replace the component locations photograph with Figure 7-1.

Delete the rc delay network between U45-pin 15 and U11B-pin 10. Connect U45-pin 15 to U11-pin 10.

Service Sheet 5:

Replace the component locations photograph with Figure 7-2.

Service Sheet 6:

Replace the component locations photograph with Figure 7-3.

MANUAL CHANGES

CHANGE B

Table 6-3:

A7C5 was originally 0180-0291. However, the part listed in the table is the recommended replacement. Therefore, no manual change is suggested.

A7C8 was originally 0180-0197. However, the part listed in the table is the recommended replacement. Therefore, no manual change is suggested.

Service Sheet 7 (schematic):

The value of C5 was originally 1 μ F. However, the value shown is correct. Therefore, no manual change is suggested.

CHANGE C:

Table 6-3:

Change the part number for A6MP1 to the following: 11729-20023 CD8.

Change the part numbers and descriptions for MP461—464 to the following: 0624-0212 CD0 SCREW-TPG 6-32 .375-IN-LG 82 DEG.

Change the part number for MP113 to the following: 11729-00005 CD4. Change the part number for MP108 to the following: 11729-20014 CD7.

CHANGE D

Table 6-3:

A9 was originally 11729-60008. However, the part number listed in the table is the recommended replacement. Therefore, no manual change is suggested.

Delete A9C40.

Delete A9L1.

Service Sheet 4:

Replace the component locations photograph with Figure 7-4.

Service Sheet 5:

Replace the component locations photograph with Figure 7-5.

Service Sheet 6:

Replace the component locations photograph with Figure 7-6.

Delete A9C40 (lower right side of the A9 assembly).

Delete A9L1 (lower right side of the A9 assembly).

Delete the -15V connection to Service Sheet 7 (lower left side of the A9 assembly).

Service Sheet 7:

Delete the -15V connection to Service Sheet 6 (right side of schematic).

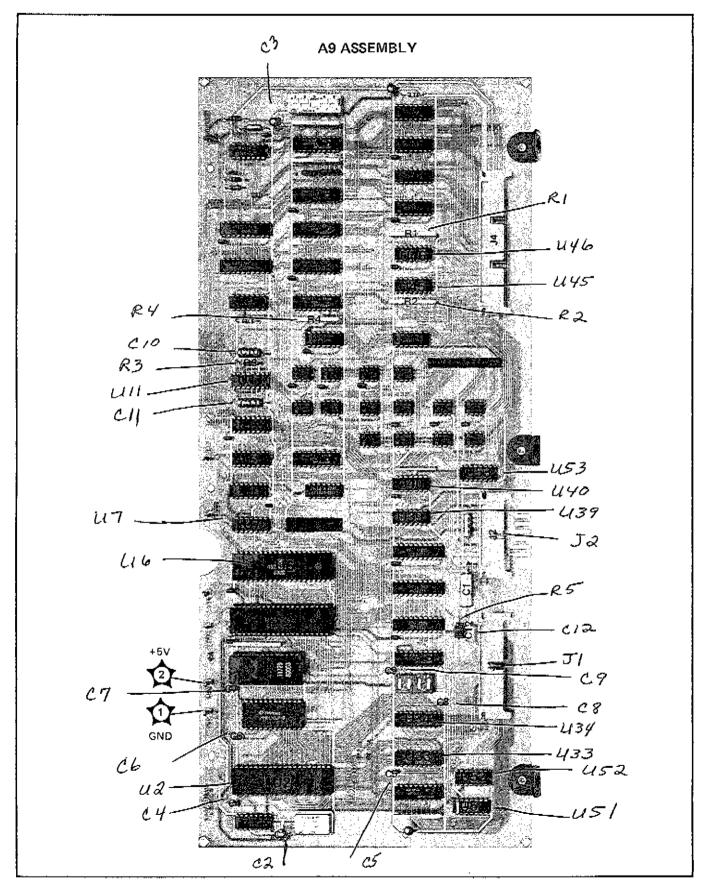


Figure 7-1. P/O Microprocessor Board Assembly Component Locations (P/O Change A)

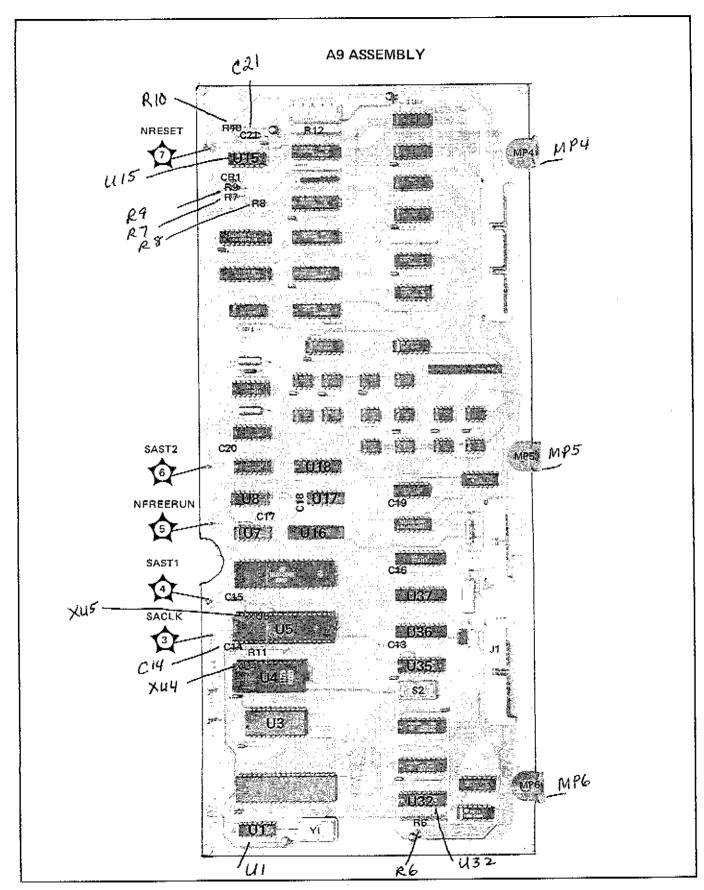


Figure 7-2. P/O Microprocessor Board Assembly Component Locations (P/O Change A)

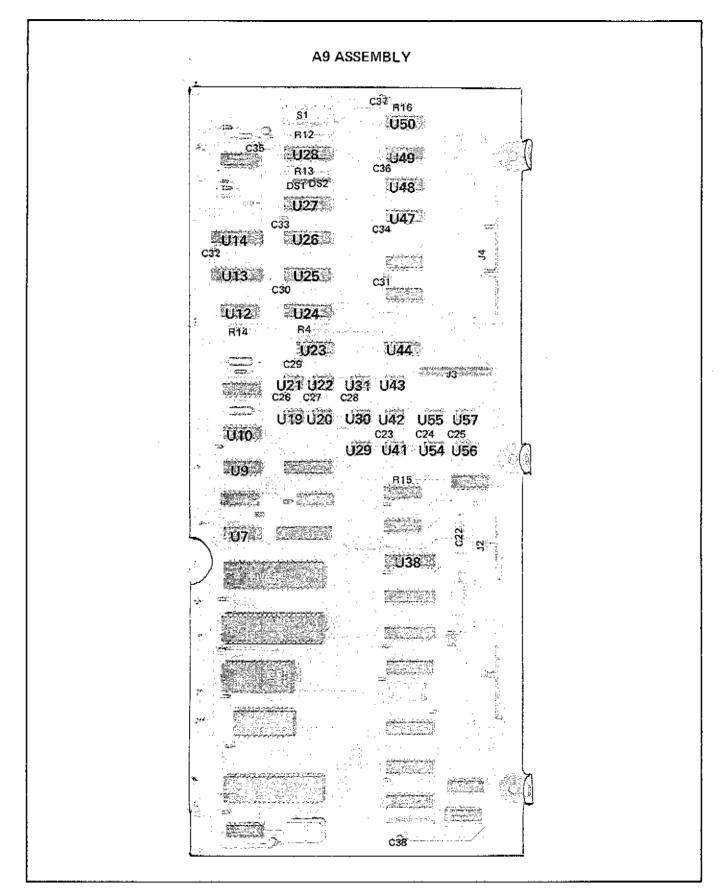


Figure 7-3. P/O Microprocessor Board Assembly Component Locations (P/O Change A)

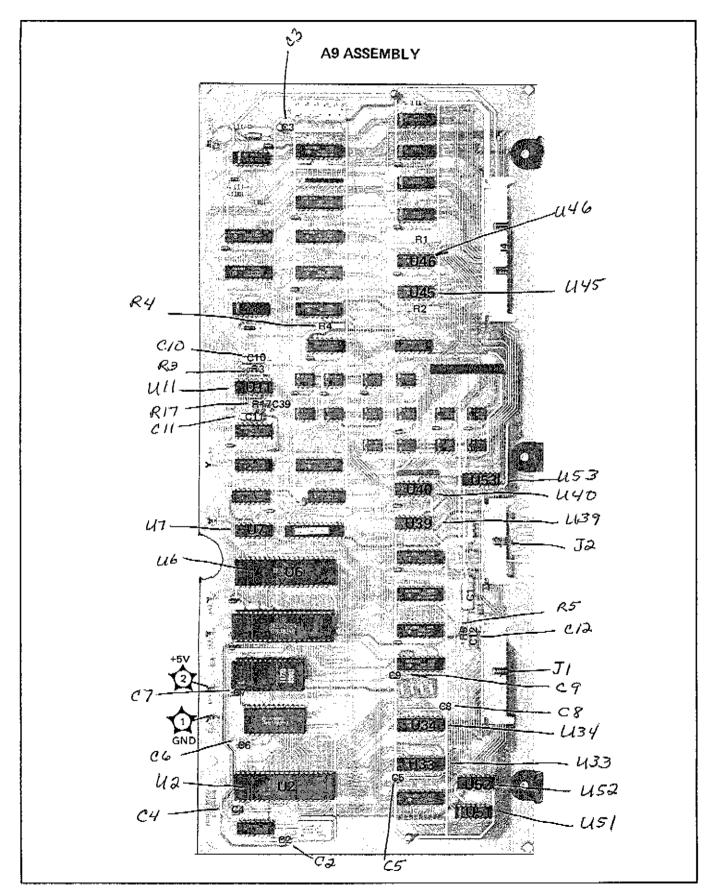


Figure 7-4. P/O Microprocessor Board Assembly Component Locations (P/O Change D)

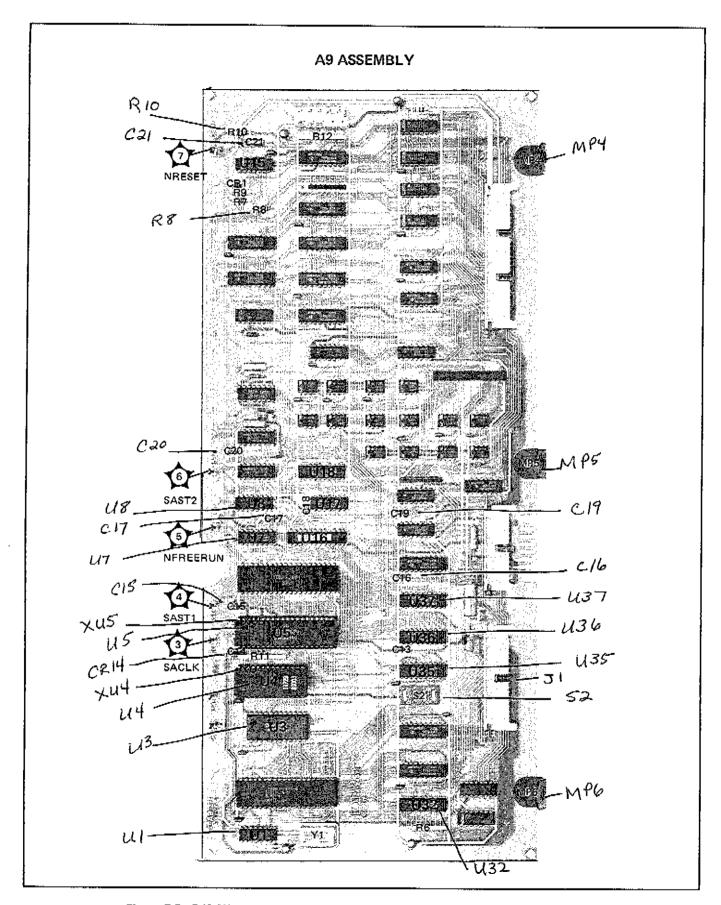


Figure 7-5. P/O Microprocessor Board Assembly Component Locations (P/O Change D)

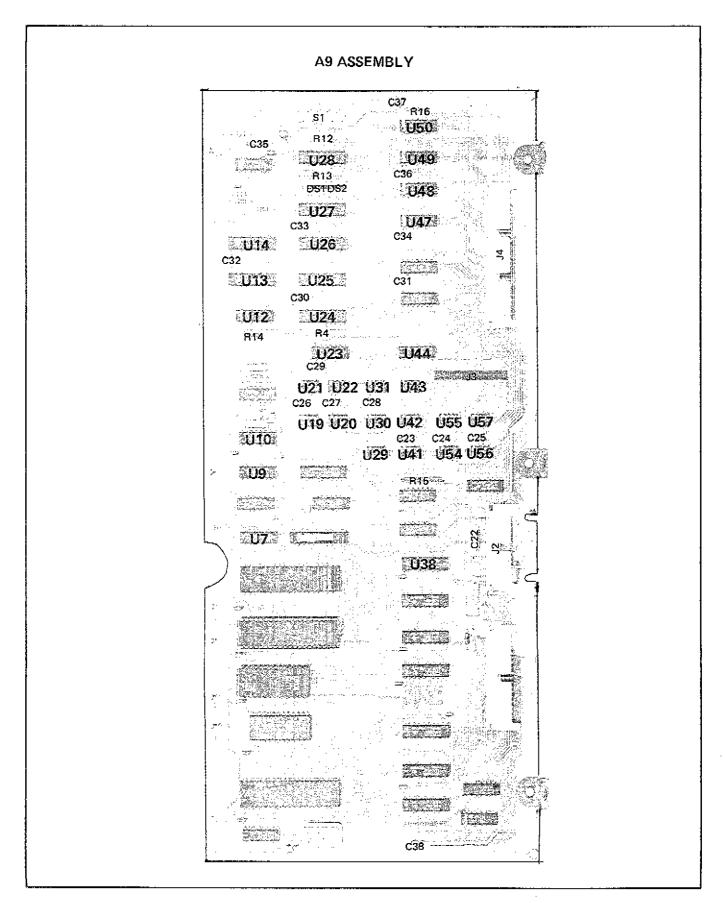


Figure 7-6. P/O Microprocessor Board Assembly Component Locations (P/O Change D)

SECTION VIII SERVICE

8-1. INTRODUCTION

This section contains information for troubleshooting and repairing the Carrier Noise Test Set. Included are troubleshooting tests, schematic and block diagrams, and principles of operation.

8-2. SERVICE SHEETS

The foldout pages (Service Sheets) in the last part of this section are a block diagram (BD1) and schematics (1 through 7).

8-3. Block Diagrams

Block Diagram 1 (BD1) is an overall block diagram that breaks the instrument into functional sections. It serves as an index to the schematic Service Sheets and as a starting point for trouble-shooting.

8-4. Schematics

Service Sheets 1 through 7 consist of assembly schematic diagrams. Symbols used in the schematic diagrams are defined in Table 8-2, Schematic Diagram Notes.

8-5. SAFETY CONSIDERATIONS

8-6. Before Applying Power

Verify that the instrument is set to match the available line voltage and that the correct fuse is installed. An uninterrupted safety earth ground must be provided from the main power source to the instrument input wiring terminals, power cord, or supplied power cord set.

8-7. Safety

Pay attention to WARNINGS and CAUTIONS. They must be followed for your protection and to avoid damage to the equipment.

WARNINGS

Maintenance described herein is performed with power supplied to the instrument and with protective covers removed. Such maintenance should be performed only by servicetrained personnel who are aware of the hazards involved (for example, fire and electrical shock). Where maintenance can be performed without power supplied, the power should be removed.

Any interruption of the protective (grounding) conductor (inside or outside the instrument) or disconnection of the protective earth terminal will create a potential shock hazard that could result in personal injury. Grounding one conductor outlet is not sufficient. Whenever it is likely that the protection has been impaired, the instrument must be made inoperative (that is, secured against unintended operation).

If this instrument is to be energized via an autotransformer, make sure that the autotransformer's common terminal is connected to the earth terminal of the power source.

Capacitors inside the instrument can still be charged even if the instrument is disconnected from its source of supply.

Make sure that only 250 volt fuses with the required rated current and of the specified type (normal blow, time delay, etc.) are used for replacement. Do not use repaired fuses or short-circuited fuse-holders. To do so could create a shock or fire hazard.

8-8. RECOMMENDED TEST EQUIPMENT

Test equipment required to maintain the Carrier Noise Test Set is listed in Table 1-4. Equipment other than that listed may be used if it meets the listed critical specifications.

8-9. SERVICE TOOLS, AIDS AND INFORMATION

8-10. Pozidriv Screwdrivers

Many screws in the Carrier Noise Test Set appear to be Phillips types, but are not. To avoid damage to the screw slots, Pozidriv screwdrivers should be used. HP 8710-0899 is the No. 1 Pozidriv. HP 8710-0900 is the No. 2 Pozidriv.

8-11. Tuning Tools

For adjustments requiring non-metalic tuning tools, use the HP 8710-0033 blade tuning tool or the HP 8710-1010 (JFD Model No. 5284) hex tuning tool. For other adjustments an ordinary small screwdriver or suitable tool is sufficient. No matter which tool is used, never force any adjustment control.

8-12. Heat Staking Tools

The pushbutton switches on the front panel have small plastic pins protruding from the back. These tabs fit through holes in the front panel printed circuit boards (A1 and A2) and are melted down to hold the switch in place. This process is known as heat staking. The heat staking tool is a standard soldering iron with a special tip attached.

8-13. Hardware

Both Unified National (inch) and metric screws are used in the Carrier Noise Test Set.

8-14. Maintenance

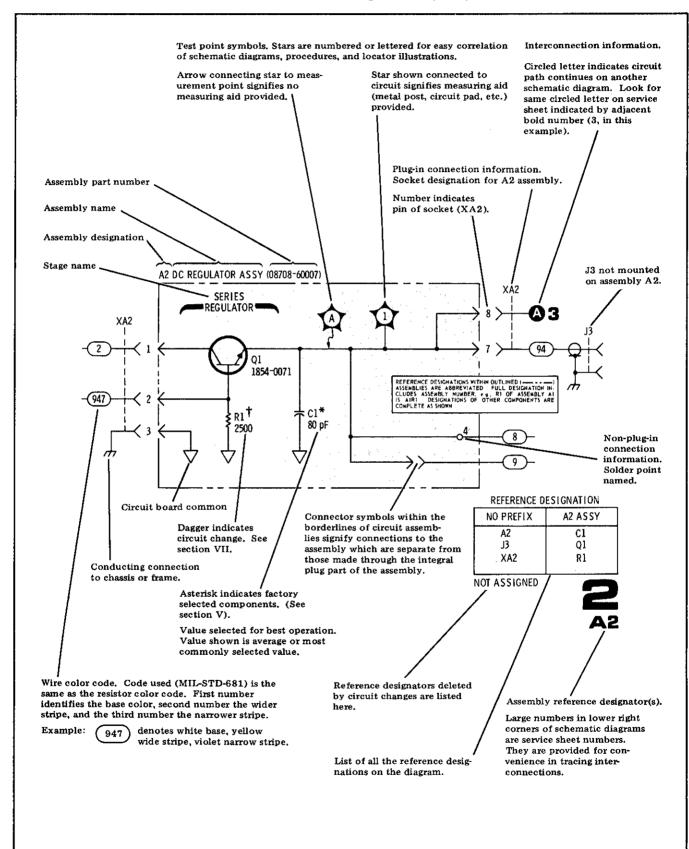

Hewlett-Packard recommends the dust that may accumulate inside the Carrier Noise Test Set to be blown out periodically.

Table 8-1. Etched Circuit Soldering Equipment

ltem	Use	Specification	Item Recommended	HP Part No.
Soldering Tool	Soldering, Heat Staking	Wattage: 35W Tip Temp.: 390—440°C (735—825°F)	Ungar No. 135 Ungar Division Eldon Ind. Corp. Compton, CA 90220	8690-0167
Soldering Tip	Soldering, Unsoldering	*Shape: Chisel	*Ungar PL113	8690-0007
Soldering Tip	Heat Staking	Shape: Cupped	HP 5020-8160 or modified Ungar PL11	5020-8160
De-Solder Aid	To remove molten solder from connection	Suction Device	Soldapullt by Edsyn Co., Van Nuys, CA 91406	8690-0060
Rosin (flux) Solvent	To remove excess flux from soldered area before applica- tion of protec- tive coating	Must not dissolve etched circuit base board.	Freon TF	8500-0232
Solder	Component replacement, Circuit Board repair wiring	Rosin (flux core, high tin content (63/37 tin/lead), 18 gauge (AWG) 0.040 in. diameter preferred.		8090-0607

^{*}For working on circuit boards; for general purpose work, use No. 555 Handle (8690-0261) and No. 4037 Heating Unit 47% - 56% W (HP 8690-0006); tip temperature of 850 - 900°F; and Ungar No. PL113 %" chisel tip.

Table 8-2. Schematic Diagram Notes (1 of 8)

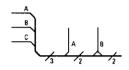


Table 8-2. Schematic Diagram Notes (2 of 8)

SCHEMATIC DIAGRAM NOTES Asterisk denotes a factory-selected value. Value shown is typical. Dagger indicates circuit change. See Section VII. O Manual control. Tool-aided adjustment. Encloses front-panel designation. Encloses rear-panel designation. Circuit assembly borderline. Other assembly borderline. Heavy line with arrows indicates path and direction of main signal. Heavy dashed line with arrows indicates path and direction of main feedback. Indicates stripline (i.e., RF transmission line above ground). Wiper moves toward cw with clockwise rotation of control (as viewed from shaft or knob). Numbered Test Point measurement aid provided. Encloses wire or cable color code. Code used is the same as the resistor color code. First number identifies the base color, second number identifies the wider stripe, and the third number identifies the narrower stripe, e.g., denotes white base, yellow wide stripe, violet narrow stripe. A direct conducting connection to earth, or a conducting connection to a structure that has a similar function (e.g., the frame of an air, sea, or land vehicle). A conducting connection to a chassis or frame. Common connections. All like-designation points are connected. Letters = off-page connection, e.g., AK AK 12 Number = Service Sheet number for off-page connection, e.g., 12 Number (only) = on-page connection.

Table 8-2. Schematic Diagram Notes (3 of 8)

SCHEMATIC DIAGRAM NOTES

Indicates multiple paths represented by only one line. Letters or names identify individual paths. Numbers indicate number of paths represented by the line.

Coaxial or shielded cable.

Relay. Contact moves in direction of arrow when energized.

Indicates a pushbutton switch with a momentary (ON) position.

Indicates a PIN diode.

Indicates a current regulation diode.

Indicates a voltage regulation diode.

Indicates a Schottky (hot-carrier) diode.

Multiple transistors in a single package—physical location of the pins is shown in package outline on schematic.

Identification of logic families as shown (in this case, ECL).

Indicates an opto-isolator of a LED and a photoresistor packaged together. The resistance of the photoresistor is a function of the current flowing through the LED.

Table 8-2. Schematic Diagram Notes (4 of 8)

DIGITAL SYMBOLOGY REFERENCE INFORMATION Input and Output Indicators Implied Indicator-Absence of polarity indicator (see below) implies that the active state is a relative high voltage level. Absence of negation indicator (see below) implies that the active state is a relative high voltage level at the input or Polarity Indicator—The active state is a relatively low voltage level. Dynamic Indicator-The active state is a transition from a relative low to a relative high voltage level. $Inhibit \, Input-Input \, that, when \, active, inhibits \, (blocks) \, the \, active \, state \, outputs \, of \,$ a digital device. Analog Input-Input that is a continuous signal function (e.g., a sine wave). Polarity Indicator used with Inhibit Indicator—Indicates that the relatively low level signal inhibits (blocks) the active state outputs of a digital device. Output Delay—Binary output changes state only after the referenced input (m) returns to its inactive state (m should be replaced by appropriate dependency or function symbols). Open Collector Output—Output that must form part of a distributed connection.

Table 8-2. Schematic Diagram Notes (5 of 8)

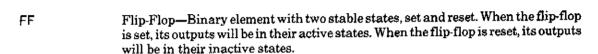

	DIGITAL SYMBOLOGY REFERENCE INFORMATION
	Input and Output Indicators (Cont'd)
3-STATE	Three-state Output—Indicates outputs that can have a high impedance (disconnect) state in addition to the normal binary logic states.
	Combinational Logic Symbols and Functions
&	AND—All inputs must be active for the output to be active.
≥1	OR—One or more inputs being active will cause the output to be active.
≩m	Logic Threshold—m or more inputs being active will cause the output to be active (replace m with a number).
=1	EXCLUSIVE OR—Output will be active when one (and only one) input is active.
=m	m and only m—Output will be active when m (and only m) inputs are active (replace m with a number).
=	Logic Identity—Output will be active only when all or none of the inputs are active (i.e., when all inputs are identical, output will be active).
	Amplifier—The output will be active only when the input is active (can be used with polarity or logic indicator at input or output to signify inversion).
X/Y	$Signal\ Level\ Converter-Input\ level (s)\ are\ different\ than\ output\ level (s).$
←	Bilateral Switch—Binary controlled switch which acts as an on/off switch to analog or binary signals flowing in both directions. Dependency notation should be used to indicate affecting/affected inputs and outputs. Note: amplifier symbol (with dependency notation) should be read to indicate unilateral switching.
X→Y	$\label{lem:code} \begin{picture}(A) code (X) is converted to output code (Y) per weighted values or a table. \end{picture}$
(Functional Labels)	The following labels are to be used as necessary to ensure rapid identification of device function.
MUX	Multiplexer—The output is dependent only on the selected input.
DEMUX	Demultiplexer—Only the selected output is a function of the input.
CPU	Central Processing Unit
PIO	Peripheral Input/Output
SMI	Static Memory Interface

Table 8-2. Schematic Diagram Notes (6 of 8)

DIGITAL SYMBOLOGY REFERENCE INFORMATION

Sequential Logic Functions

1,,,,,,,	Monostable—Single shot multivibrator. Output becomes active when the input becomes active. Output remains active (even if the input becomes inactive) for a period of time that is characteristic of the device and/or circuit.
	Oscillator—The output is a uniform repetitive signal which alternates between the high and low state values. If an input is shown, then the output will be active if and

Т	Toggle Input—When active, causes the flip-flop to change states.
---	--

only if the input is in the active state.

Data Input—Always enabled by another input (generally a C input—see Dependency Notation). When the D input is dependency-enabled, a high level at D will set the flip-flop; a low level will reset the flip-flop. Note: strictly speaking, D inputs have no active or inactive states—they are just enabled or disabled.

Count-Up Input—When active, increments the contents (count) of a counter by "m" counts (m is replaced with a number).

Count-Down Input—When active, decrements the contents (count) of a counter by "m" counts (m is replaced with a number).

Shift Right (Down) Input—When active, causes the contents of a shift register to shift to the right or down "m" places (m is replaced with a number).

Shift Left (Up) Input—When active, causes the contents of a shift register to shift to the left or up "m" places (m is replaced with a number).

NOTE

For the four functions shown above, if m is one, it is omitted.

(Functional Labels)

m

-m

 $\rightarrow m$

← m

The following functional labels are to be used as necessary in symbol build-ups to ensure rapid identification of device function.

Table 8-2. Schematic Diagram Notes (7 of 8)

DIGITAL SYMBOLOGY REFERENCE INFORMATION

Sequential Logic Functions (Cont'd)

mCNTR Counter—Array of flip-flops connected to form a counter with modulus m (m is replaced with a number that indicates the number of states: 5 CNTR, 10 CNTR,

etc.).

REG Register—Array of unconnected flip-flops that form a simple register or latch.

SREG Shift Register—Array of flip-flops that form a register with internal connections

that permit shifting the contents from flip-flop to flip-flop.

ROM Read Only Memory—Addressable memory with read-out capability only.

RAM Random Access Memory—Addressable memory with read-in and read-out

capability.

Dependency Notation

mAm
Address Dependency—Binary affecting inputs of affected outputs. The m prefix is replaced with a number that differentiates between several address inputs, indicates dependency, or indicates demultiplexing and multiplexing of address inputs and

outputs. The m suffix indicates the number of cells that can be addressed.

Gm Gate (AND) Dependency—Binary affecting input with an AND relationship to those inputs or outputs labeled with the same identifier. The m is replaced with a

number or letter (the identifier).

Cm Control Dependency—Binary affecting input used where more than a simple AND

relationship exists between the C input and the affected inputs and outputs (used

only with D-type flip-flops).

Vm OR Dependency—Binary affecting input with an OR relationship to those inputs or

outputs labeled with the same identifier. The m is replaced with a number or the

letter (the identifier).

Free Dependency—Binary affecting input acting as a connect switch when active

and a disconnect when inactive. Used to control the 3-state behavior of a 3-state device.

NOTE

The identifier (m) is omitted if it is one—that is, when there is only one dependency relationship of that kind in a particular device. When this is done, the dependency indicator itself (G, C, F, or V) is used to prefix or suffix the affected (dependent) input or output.

Enable

Table 8-2. Schematic Diagram Notes (8 of 8)

DIGITAL SYMBOLOGY REFERENCE INFORMATION

Miscellaneous

Schmitt Trigger—Input characterized by hysterisis; one threshold for positive going signals and a second threshold for negative going signals.

Active Active State—A binary physical or logical state that corresponds to the true state of an input, an output, or a function. The opposite of the inactive state.

Enabled Condition—A logical state that occurs when dependency conditions are satisfied. Although not explicitly stated in the definitions listed above, functions are assumed to be enabled when their behavior is described. A convenient way to think of it is as follows:

A function becomes active when:

- it is enabled (dependency conditions—if any—are satisfied)
- and its external stimuls (e.g., voltage level) enters the active state.

SERVICE SHEET BD1

OVERALL FUNCTIONAL BLOCK DIAGRAM

PRINCIPLES OF OPERATION

General. The HP Model 11729B Carrier Noise Test Set performs four (4) major tasks:

- Up converts an external reference signal
- Down converts the signal under test
- Phase detects the signal under test and a reference signal
- Phase locks the signal under test to a reference signal

These four operations allow the Carrier Noise Test Set to be used as an integral part of a phase noise measurement system. With Option 130 installed, the Carrier Noise Test Set has AM noise measurement capabilities. The Carrier Noise Test Set accepts test signals from 10 MHz—18 GHz, at a level of +7 dBm to +20 dBm.

For the Carrier Noise Test Set to be completely operational it requires one or two drive signals (a fixed 640 MHz signal and/or a tunable 5 MHz to 1280 MHz signal) that are supplied from an external RF source.

The following discussion describes the purpose of Service Sheets 1-6.

Service Sheet 1—Reference Up-Conversion, Test Signal Down-Conversion and Phase Detecting Circuits

Service Sheet 1 has all the circuitry necessary to up-convert the reference signal, and down-convert and phase detect the signal under test.

The signal under test (10 MHz—18 GHz) is down-converted to 5 MHz—1280 MHz. For test signals from 5 MHz—1280 MHz down-converting is not required. To achieve the down-converted signal a fixed 640 MHz signal is up-converted to microwave frequencies by being input to a comb generator (step recovery diode multiplier). The comb generator outputs harmonics of the 640 MHz signal. One of the harmonics is selected with a passband filter. The filter is user selectable from the front panel (local) or by using the Hewlett-Packard Interface Bus (remote). The harmonic selected is mixed with the signal under test. The result pro-

duces a down-converted signal under test from 5 MHz—1280 MHz. The resulting signal (or direct test signal from 5 MHz—1280 MHz) is input to a mixer/phase detector along with a tunable 5 to 1280 MHz signal. The end product is a dc signal with ac components directly proportional to the phase detected difference between the signal under test and the tunable 5 MHz—1280 MHz signal.

All circuitry necessary for AM detecting the signal under test, to make an AM noise measurement, is on Service Sheet 1.

Service Sheet 2—Low Pass Filter and Low Noise Amplifier Circuits

The dc signal from the mixer/phase detector on Service Sheet 1 is filtered and output for connection to a spectrum analyzer.

The Low Noise Amplifier amplifies the filtered signal so it can be seen on a laboratory spectrum analyzer.

Service Sheet 3-Phase Lock Circuits

With some methods of making a phase noise measurement, the signal under test and the tunable 5 MHz—1280 MHz signal must stay in phase quadrature (that is, 90 degrees out-of-phase). A phase lock loop is used to maintain this phase relationship.

Phase lock loops consist of the following three components:

- A Voltage Controlled Oscillator (VCO)
- A Phase Detector
- A Loop Filter

The VCO of the phase lock loop can be either the external RF source supplying the tunable 5 MHz—1280 MHz signal or it can be the device under test. The other two components of the phase lock loop are supplied by the Carrier Noise Test Set. The phase detector is shown on Service Sheet 1.

The loop filter circuitry for controlling the phase lock loop bandwidth is shown on this Service Sheet. The main input to the Phase Lock Circuits is from the mixer/phase detector through a low pass filter (on Service Sheet 2). The signal from the mixer/phase detector is input to a series of amplifiers with variable gain. The gain (loop bandwidth) is user selectable in local (front panel) or remote (HP-IB) by selection of the Lock Bandwidth Factor. The signal from the mixer/phase

detector is processed through the series of amplifiers and the following signals are output:

- FREQ CONT DC-FM
- FREQ CONT X-OSC

These two signals are supplied to control the frequency of the VCO. The signal chosen will depend on the tuning voltage required by the VCO. FREQCONT X-OSC has an output voltage of ± 10 Volts dc. FREQ-CONT DC-FM has an output voltage of ± 1 Volt dc. When locked, the VCO will now track these control signals.

A CAPTURE control is supplied to widen the loop bandwidth, when first trying to acquire phase lock. The CAPTURE control causes the gain of the amplifiers to be fixed. The CAPTURE control overrides any gain that was set by the Lock Bandwidth Factor.

The LOOP TEST PORTS are used to characterize the frequency response of the phase lock loop. This characterization determines how much the loop suppresses noise at different frequency offsets from the signal under test.

Service Sheet 4—Data Input Circuits

Service Sheet 4 shows how data is input to the Carrier Noise Test Set. The data can be input using the front panel or Hewlett-Packard Interface Bus (remote). All necessary circuitry for encoding the front panel keys and interfacing with the microprocessor in local is documented on Service Sheet 4.

Service Sheet 5—Data Processing Circuits

Service Sheet 5 contains the microprocessor, ROM and RAM. Information entered into the Carrier Noise Test Set is processed by this circuitry.

Service Sheet 6—Switch and LED Control Circuits

Data is entered in local or remote (HP-IB). Next it is processed by the circuitry shown on Service Sheet 5, then output to the circuitry shown on Service Sheet 6. Service Sheet 6 consists mainly of data latches and drivers. The data output from Service Sheet 5 is available to all latches in parallel. The data in the latches is used to control the filter switches and front panel LEDs.

TROUBLESHOOTING

The troubleshooting procedures are referenced to the Block Diagram by a hexagon with a checkmark and a number inside

For example, $\sqrt{1}$

Test Equipment

Digital Multimeter	HP 3456A
Microwave Synthesized Source	HP 8340A
Oscilloscope	HP 1740A
Spectrum Analyzer	
Power Meter	HP 436A
RF Synthesized Signal Generator.	
-	(Option 003)

AM SWITCH OPERATION (VI)

The following troubleshooting will help to isolate an AM switch problem to the Microprocessor Circuits or the Reference Up-conversion, Test Signal Down-conversion and Phase Detecting Circuits.

AM Switch Drive Circuitry Verification

- Remove the top cover of the Carrier Noise Test Set.
- 2. Locate the AM switch. The switch on the far right next to the IF amplifier (A10), as viewed from the front, is the AM switch.
- 3. Verify +24 volts is on pin 2 (center pin of the switch). If the voltage is correct, proceed to step 4. If the voltage is incorrect, inspect the switch wiring, then if necessary troubleshoot the power supply circuitry on Service Sheet 7.
- 4. Monitor the voltage on pin 3 (top pin of the AM switch) while pressing the MODE switch repeatedly on the front panel. The voltages measured should change as follows:

	MODE		
AM Switch	AM	Phase Noise	
pin 1 pin 2 pin 3	+0.7V +23.8V +23.8V	+23.8V +23.8V +0.7V	

5. If the voltages measured are correct proceed to step 6. If the voltages are incorrect, check the wiring to the switch or the AM switch circuitry on Service Sheet 6.

SERVICE SHEET BD1 (cont'd) AM Switch Verification

Check the operation of the AM switch. The proper operating conditions of the AM switch are listed below:

A clicking sound can be heard when the MODE switch on the front panel is repeatedly pushed.

The AM modulation on a microwave test signal input can be viewed from the <10 MHz output when the AM noise measurement mode is enabled.

MICROWAVE FILTER SWITCH OPERATION $\langle \sqrt{2} \rangle$

The following troubleshooting will help to isolate a microwave filter switch problem to the Microprocessor Circuits or the Reference Up-conversion, Test Signal Down-conversion and Phase Detecting Circuits.

NOTE

Before starting to troubleshoot be sure to confirm that the 640 MHz IN signal is 640 MHz ± 32 kHz at a level of ± 1 dBm minimum.

Microwave Filter Switch Drive Circuitry Verification

- 1. Remove the top cover of the Carrier Noise Test Set.
- 2. Locate the microwave switch that is not properly operating. The group of switches for bands 2 through 8 are located on the left side of the instrument as viewed from the front. The switches for bands 2 through 8 are setup consecutively from left to right.

The switch for band 1 is located on the right side of the instrument as viewed from the front. If there are two (2) switches on the right side, the switch located closest to the side of the instrument is the switch for band one (1).

3. Verify that +24 volts is on pin 2 (the center pin of the switch in question).

If the voltage is correct, proceed to step 4. If the voltage is incorrect, inspect the switch wiring, then if necessary troubleshoot the power supply circuitry on Service Sheet 7.

4. Monitor the voltage on pin 3 (top pin of switch). Select the button on the front panel

that controls the band in question. Select another band to switch out the band in question. The voltages measured should change as follows:

Microwave Filter Switch	Bands 2-8		Band 1	
	Selected	Not Selected	Selected	Not Selected
pin 1	+0.7V	+23.8V	+23.8V	+0.7V
pin 2	+23.8V	+23.8 V	+23.8V	+23.8V
pin 3	+23.8V	+0.7V	+0.7 V	+23.8V

 If the voltages measured are correct proceed to step 6. If the voltages are incorrect troubleshoot the wiring to the switch or the microwave filter switch circuitry on Service Sheet 6.

Microwave Filter Switch Verification

6. Proper operation of the microwave filter switch is listed below:

Input a microwave test signal at a frequency of 400 MHz above the BAND CENTER frequency of the BAND RANGE in question. The level of the microwave test signal in band one should be 0 dBm. In bands 2-8 the level should be +10 dBm.

Observe the IF OUTPUT, on the front panel, with a spectrum analyzer. A 400 MHz IF signal should be seen if the band is operating properly.

AM NOISE DETECTOR (3) (Option 130 Only)

The following troubleshooting will isolate an AM Noise Detector problem to either the Reference Upconversion, Test Signal Down-conversion and Phase Detecting Circuits or the Low Pass Filter and Low Noise Amplifier circuits. Use the following test conditions to verify that the AM Noise Detector is operating properly:

- Connect a 10 GHz signal at a level of +10 dBm to the MICROWAVE TEST SIGNAL INPUT connector on the front panel.
- 2. Push the MODE button until the AM LED is illuminated.
- 3. Disconnect cable (W5) from the AM-DET (J2) connector on the Low Pass Filter Board Assembly. Connect a multimeter to the end of

cable (W5). Set the multimeter to volts dc. The voltage on the multimeter should read typically -0.8 volts dc.

- 4. Push the MODE button so the PHASE NOISE LED is illuminated. The multimeter should now read 0 volts do.
- 5. If these voltages are correct troubleshoot the Low Pass Filter Circuits on Service Sheet 2. If these voltages are incorrect, disconnect the AM detector (CR2) from the AM switch (S9). Measure the power out of port one (1) of the AM switch. The power measured should be >+9.5 dBm.
- If the measured power is correct check the AM detector and associated wiring. If the measured power is incorrect, refer to AM switch operation.

IF INPUT TO LOW PASS FILTER (14)

The following troubleshooting will isolate an IF problem to either the Reference Up-conversion, Test Signal Down-conversion and Phase Detecting Circuits or the Low Pass Filter and Low Noise Amplifier circuits.

1. Set the following initial conditions:

Carrier Noise Test Set

BAND CENTER FREQUENCY: 9.6 GHz* LOCK BANDWIDTH FACTOR: 10 kHz MODE: Phase Noise Measurement Disconnect cable from frequency control (X-OSC or DC-FM) on the rear panel.

Microwave Source (See critical specifications in Section I)

FREQUENCY: 10 GHz (CW)*

LEVEL: +10 dBm MODULATION: Off

ALL OTHER FUNCTIONS: Off

Tunable 5 to 1280 MHz Source (See critical specifications in Section I)

FREQUENCY: 400.01 MHz (CW)*

LEVEL: 0 dBm

MODULATION: Off

ALL OTHER FUNCTIONS: Off

- 2. Verify that the voltage out of the IF port on the U7 mixer (Phase Detector) is 0.25 Vpp into 50 ohms.
- 3. If the voltage is correct troubleshoot the Low Pass Filter and Low Noise Amplifier Circuits. If the voltage is incorrect, troubleshoot the Reference Up-conversion, Test Signal Downconversion and Phase Detecting Circuits.

PHASE LOCK DETECTOR SIGNAL (15)

The following troubleshooting will isolate a Phase Lock Detector Signal problem to the Low Pass Filter and Low Noise Amplifier circuits or the Phase Lock Circuits.

- 1. Connect a 10 GHz* signal at a level of +10 dBm to the MICROWAVE TEST SIGNAL INPUT connector (J6) on the front panel.
- Connect a 400.1 MHz* signal at a level of -40 dBm to the 5 to 1280 MHz INPUT connector on the front panel.
- 3. On the front panel select the BAND RANGE with a BAND CENTER frequency of 9.6 GHz*. Enable Phase Noise Measurement MODE and a Lock Bandwidth Factor of 100.
- 4. On the Low Pass Filter Board Assembly disconnect cable (W10) at LNA (J4).
- On the A7 Power Supply Board Assembly disconnect cable (W6) to the PHASE LOCK IN connector J9.
- 6. Connect cable W6 to a spectrum analyzer. Measure the power of the 100 kHz beat note. The power should be -48 dBm typical.
- 7. If the power is correct troubleshoot the Phase Lock circuits on Service Sheet 3. If the power is incorrect troubleshoot the Low Pass Filter and Low Noise Amplifier circuits on Service Sheet 2.

BANDWIDTH CONTROL (15)

The following troubleshooting will isolate a bandwidth control problem to either the Microprocessor Circuits or the Phase Lock Circuits.

The tunable 5 to 1280 MHz source is left set to 400.01 MHz.

^{*}Use the following procedure if the 9.6 GHz BAND CENTER frequency is not installed:

Select en available BAND RANGE.

Set the microwave source to 400 MHz above the BAND CENTER frequency of the BAND RANGE selected.

On the A9 Microprocessor Board Assembly monitor the TTL logic levels at J2 pins 4,6 and 8 while changing the Lock Bandwidth Factor on the front panel. The TTL logic levels should be as shown below:

Ł	Lock Bandwidth Factor		O r			
1	10	108	1k	10k	A9 Microprocessor Board	
0	0	0	0	1	J2 pin 4	
0	0	1	1	0	J2 pin 6	
0	1	0	1	0	J2 pin 8	

If the logic levels are incorrect troubleshoot the A9 Microprocessor Board Assembly. If the logic levels are correct troubleshoot the Phase Lock Circuits.

CAPTURE CONTROL (17)

The following troubleshooting will isolate a Capture Control problem to either the Microprocessor Circuits or the Phase Lock Circuits.

On the A9 Microprocessor Board Assembly monitor the TTL logic level at J2 pin 10 with the CAPTURE button, on the front panel, pressed and released.

The logic level should be:

Capture released = 1

Capture pressed = 0

If the logic level is incorrect troubleshoot the Microprocessor circuits. If the logic level is correct troubleshoot the Phase Lock Circuits.

OUT-OF-LOCK CONTROL (78)

The following troubleshooting will isolate an Outof-Lock Control problem to either the Microprocessor circuits or the Phase Lock circuits.

- Connect a signal of 10 GHz* at a level of +10 dBm to the MICROWAVE TEST SIGNAL INPUT connector on the front panel.
- 2. Connect a signal of 400 MHz* at a level of 0 dBm to the 5—1280 MHz INPUT connector on the front panel.
- 3. On the Carrier Noise Test Set select the BAND RANGE with a BAND CENTER frequency of

- 9.6 GHz*. Press the MODE button to enable a phase noise measurement. Select a LOCK BANDWIDTH FACTOR of 100.
- 4. Press and release CAPTURE, on the Carrier Noise Test Set, to phase lock the microwave source (D.U.T.) to the tunable 5 to 1280 MHz source.

If the sources do not phase lock (green bar does not remain illuminated on the front panel phase lock indicator) the tunable 5 to 1280 MHz source must be tuned closer in frequency to the IF frequency ($f_{\rm IF} = f_{\rm D.U.T.} - f_{\rm band\ center\ frequency}$). Press CAPTURE while tuning the tunable 5 to 1280 MHz source in 1 kHz steps. Watch the phase lock indicator on the Carrier Noise Test Set. When the LED's on the indicator all light up, reduce the resolution of the tunable 5 to 1280 MHz source by a factor of 10.

NOTE

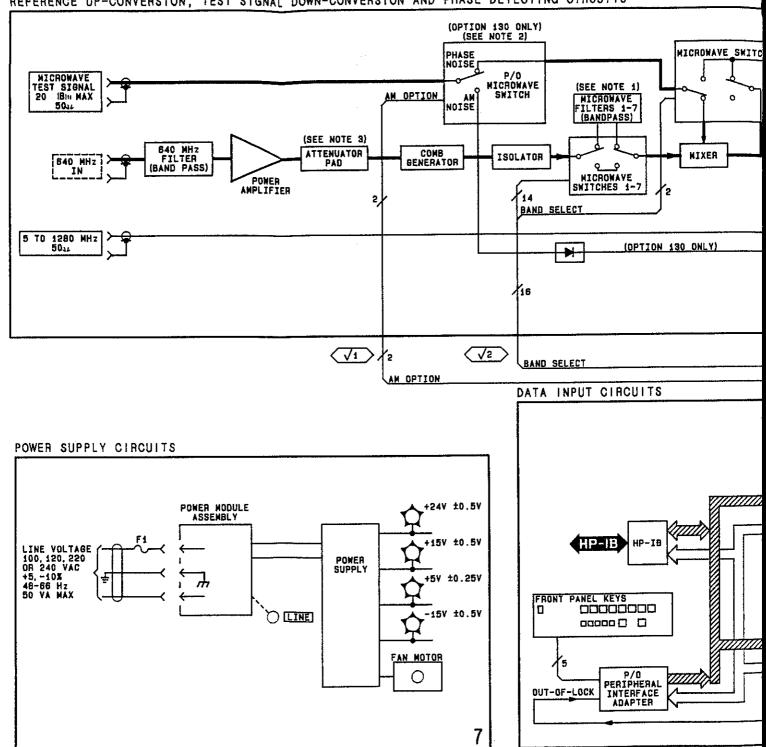
Connect the spectrum analyzer to the <10 MHz OUTPUT, on the Carrier Noise Test Set, if difficulties occur in determining the direction to tune the tunable 5 to 1280 MHz source to acquire phase lock.

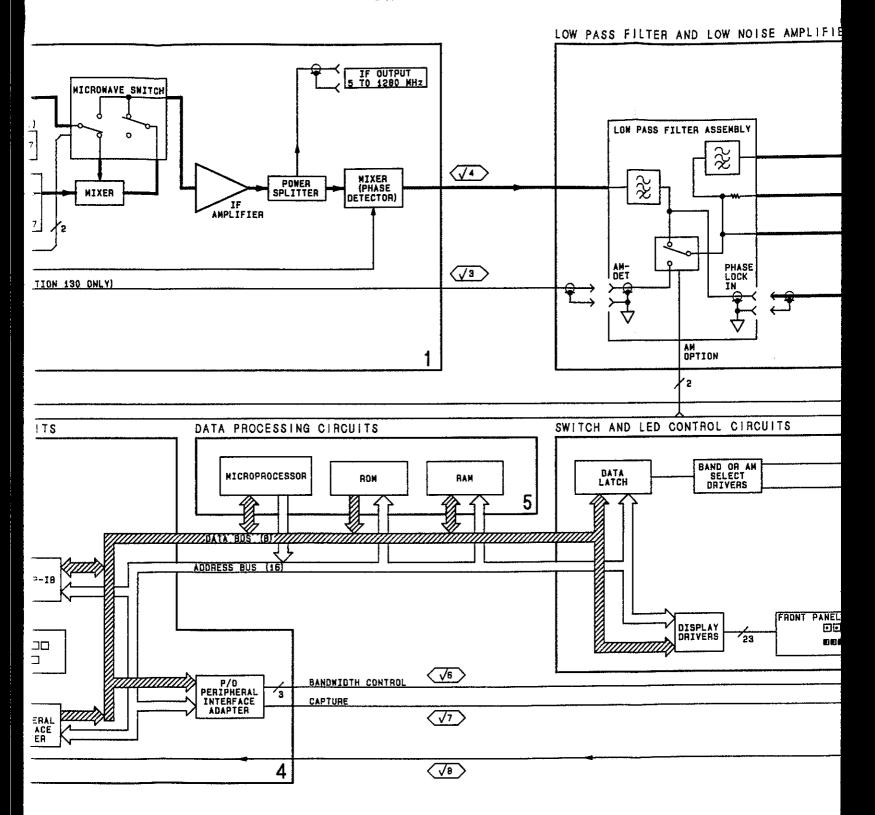
The signals displayed on the spectrum analyzer represent the frequency difference between the two inputs to an internal mixer/phase detector in the Carrier Noise Test Set. The signals will decrease in frequency to dc when tuning towards phase lock and increase in frequency when tuning away from phase lock.

Press CAPTURE and tune in this reduced resolution. Watch the red LEDS on the Carrier Noise Test Set phase lock indicator step through one side of the display – to the green bar – then to the other side of the display. Again reduce the resolution on the tunable 5 to 1280 MHz source by a factor of 10. Tune in this finer resolution until the green LED is illuminated. When the green LED is illuminated release CAPTURE.

^{*}Use the following procedure if the 9.6 GHz BAND CENTER frequency is not installed:

[—] Select an available BAND RANGE.


Set the microwave source to 400 MHz above the BAND CENTER frequency of the BAND RANGE selected.


[—] The tunable 5 to 1280 MHz source is left set to 400 MHz.

- 5. On the A9 Microprocessor Board Assembly monitor connector J2 pin 12 with a multimeter. The microwave source and the tunable 5 to 1280 MHz source should be phase locked. When phase locked 5 volts dc should be measured at J2 pin 12.
- 6. Now increase the tunable 5 to 1280 MHz source by 500 kHz. The microwave source and the
- tunable 5 to 1280 MHz source should no longer be phase locked. Measure the voltage at J2 pin 12 again it should be 1 volt dc typically.
- 7. If the voltages measured at J2 pin 12 were found to be incorrect, troubleshoot the phase lock circuits. If the voltages were correct, troubleshoot the microprocessor circuits.

F16.8-1 SHT. 1044

REFERENCE UP-CONVERSION, TEST SIGNAL DOWN-CONVERSION AND PHASE DETECTING CIRCUITS

F16.8-1 SHI. 3 of 4

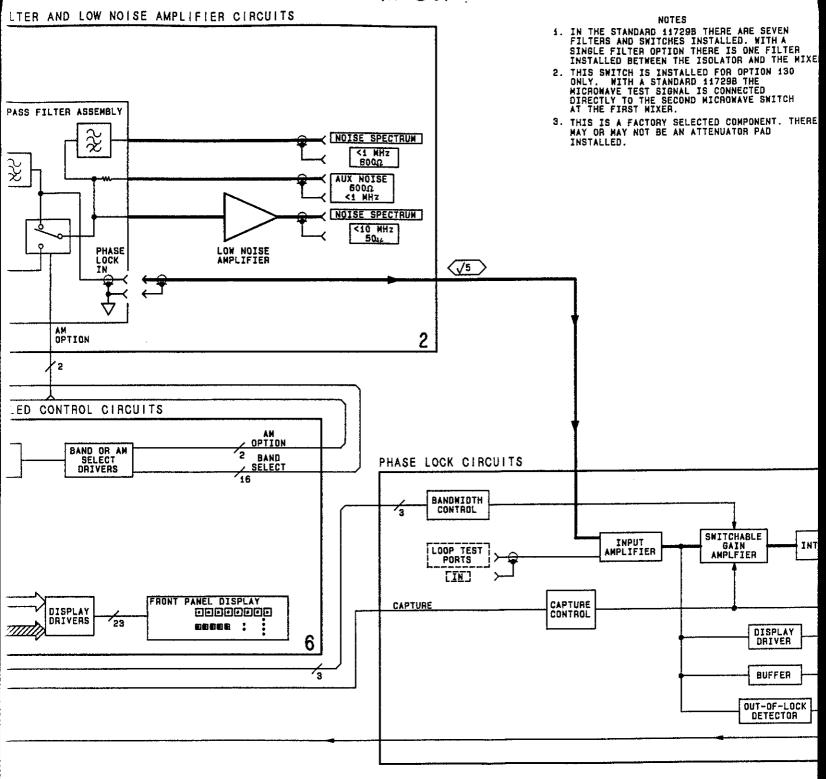


FIG. 8-1 SHT. 4 of 4

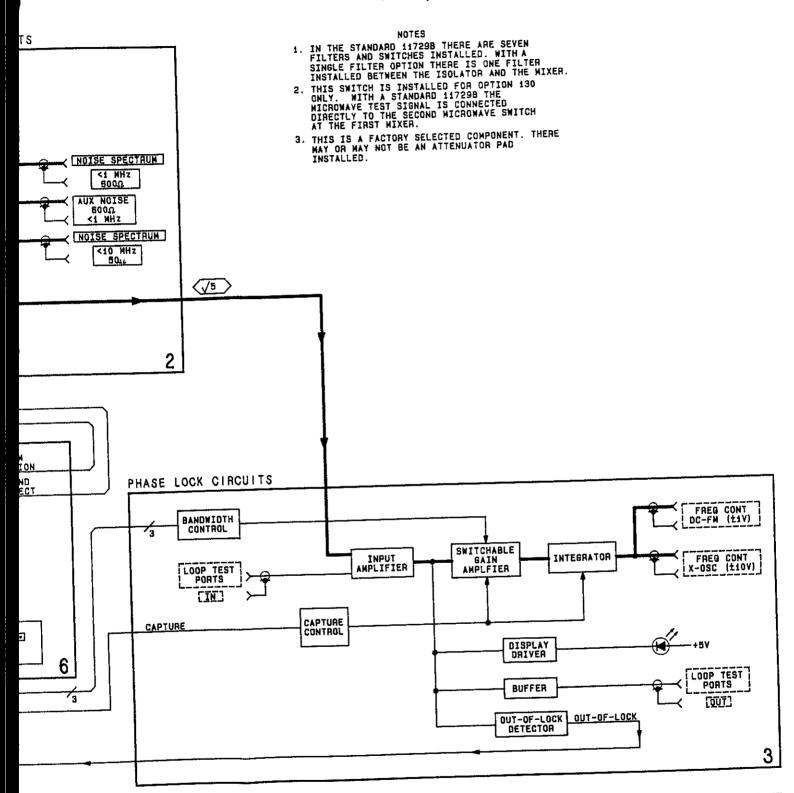


Figure 8-1. Overall Functional Block Diagram

SERVICE SHT !

SERVICE SHEET 1 REFERENCE UP-CONVERSION, TEST SIGNAL DOWN-CONVERSION AND PHASE DETECTING CIRCUITS

PRINCIPLES OF OPERATION

General

Service Sheet 1 provides the circuitry for converting a 10 MHz to 18 GHz microwave test signal down to 5 to 1280 MHz. Test signals of 5 to 1280 MHz do not have to be down converted. These signals are input directly to the IF amplifier.

The 640 MHz IN reference signal enters the Carrier Noise Test Set from the rear panel. The level of this signal is >+1 dBm. This signal is filtered, amplified, and attenuated (if necessary) to assure a +27 to +28 dBm level required to drive the comb generator. The comb generator is basically a step recovery diode. Its output is a series of signals that are spaced 640 MHz apart. An isolator prevents signals from being reflected back to the comb generator. A microwave bandpass filter is selected via program or front panel control to pass one of the comb lines. This comb line is then mixed with the microwave signal under test (entered from the front panel) to produce an intermediate frequency (IF) between 5 and 1280 MHz. The IF signal is amplified and fed through a power splitter. One output of the power splitter goes to the front panel IF OUTPUT connector. The other output provides one input to a mixer/phase detector. The mixer/phase detector compares the IF signal to a reference signal of the same frequency from an external RF source to detect the phase difference.

640 MHz Bandpass Filter

The purpose of this filter is to reduce any 10 or 20 MHz reference spurs and reduce the broadband noise from the 640 MHz IN signal. The insertion loss is approximately 2 dB.

Power Amplifier Assembly and Attenuator Pad

After the bandpass filter, the 640 MHz signal goes into the A11 Power Amplifier Assembly. The power amplifier boosts the signal level to a minimum of ± 26.5 dBm. A level between ± 26.5 and ± 28 dBm is required to drive the comb generator. A 1 or 2 dB attenuator pad is inserted, if necessary, to acheive the ± 27 to ± 28 dBm level to properly operate the comb generator.

Comb Generator and Isolator

The next item in the chain is comb generator G1. The comb generator is a step recovery diode and uses the 640 MHz input signal to generate a series of harmonics extending beyond 18 GHz.

The comb generator is followed by an isolator. The isolator provides a 50 ohm match to the output of the comb generator preventing comb lines rejected by the following band pass filters from reflecting back into the comb generator. The isolator exhibits low insertion loss above 6 GHz. Below 6 GHz the insertion loss can be as high as 6 or 8 dB. This is not a problem, however, because the comb lines at lower frequencies have the most power.

SERVICE SHEET 1 (cont'd)

Microwave Switches and Band

Following the isolator is a series pass filters. There is a microwave A standard Carrier Noise Test Depending on the instrument of sections may exist.

The filters select one comb line (hothers. Rejected frequencies are a selected comb line. The insertion or less.

Microwave Mixer (U5)

The output from the microwave b of the microwave mixer. The sign

In bands 2 through 8, the micro drive signal to the mixer. It shou ments may also be done with ing some potential degradation of th

The microwave test signal is mixed IF (difference frequency), which frequency is between 5 and 128 microwave mixer is 14 dB or less. If the mixer is -33 dBm.

In band 1, the microwave test sign and goes to the IF amplifier direc signal level is 0 dBm (instead of bands 2 through 8.) Slightly deg occurs with greater than 2 or 3 dE port because of the action of the li

IF Amplifier Assembly

The IF amplifier boosts the signa signal drives the LO port of the quency into the amplifier ranges :

Power Splitter and Mixer/Phase

The output of the IF amplifier goes of the power splitter is to provide This output is identical in level to a splitter, which drives the LO port of level is specified to be at least +7 december 1.

SERVICE SHT / SHT・2 of 3 SERVICE SHEET 1 (cont'd)

ST SIGNAL DOWN-TING CIRCUITS

or converting a 10 MHz to 18 of 1280 MHz. Test signals of 5 onverted. These signals are

s the Carrier Noise Test Set nalis>+1 dBm. This signal necessary) to assure a ± 27 to comb generator. The comb lode. Its output is a series of An isolator prevents signals b generator. A microwave or front panel control to pass then mixed with the microe front panel) to produce an nd 1280 MHz. The IF signal splitter. One output of the TOUTPUT connector. The mixer/phase detector. The gnal to a reference signal of 7 source to detect the phase

iny 10 or 20 MHz reference rom the 640 MHz IN signal. B.

uator Pad

z signal goes into the A11 amplifier boosts the signal vel between +26.5 and +28 ator. A 1 or 2 dB attenuator the +27 to +28 dBm level to

rator G1. The comb generane 640 MHz input signal to ng beyond 18 GHz.

plator. The isolator provides generator preventing comb filters from reflecting back exhibits low insertion loss loss can be as high as 6 or 8 ause the comb lines at lower

Microwave Switches and Bandpass Filters

Following the isolator is a series of microwave switches and bandpass filters. There is a microwave switch associated with each filter. A standard Carrier Noise Test Set has 7 switches and 7 filters. Depending on the instrument option number, fewer switch-filter sections may exist.

The filters select one comb line (harmonic of 640 MHz) and reject all others. Rejected frequencies are attenuated at least 30 dB below the selected comb line. The insertion loss through the filter bank is 5 dB or less.

Microwave Mixer (U5)

The output from the microwave bandpass filters goes to the RF port of the microwave mixer. The signal level must be a least -20 dBm.

In bands 2 through 8, the microwave test signal provides the LO drive signal to the mixer. It should be at least 7 dBm, but measurements may also be done with input levels as low as -10 dBm with some potential degradation of the noise floor.

The microwave test signal is mixed with the comb line to produce an IF (difference frequency), which goes to the IF amplifier. The IF frequency is between 5 and 1280 MHz. The insertion loss of the microwave mixer is $14 \, \mathrm{dB}$ or less. The lowest acceptable signal out of the mixer is $-33 \, \mathrm{dBm}$.

In band 1, the microwave test signal bypasses the microwave mixer and goes to the IF amplifier directly. The optimum microwave test signal level is 0 dBm (instead of greater than 7 dBm, needed for bands 2 through 8.) Slightly degraded phase noise performance occurs with greater than 2 or 3 dBm into the microwave test signal port because of the action of the limiters inside the IF amplifier.

IF Amplifier Assembly

The IF amplifier boosts the signal level up to at least 14 dBm. This signal drives the LO port of the mixer/ phase detector. The frequency into the amplifier ranges from 5 to 1280 MHz.

Power Splitter and Mixer/Phase Detector

The output of the IF amplifier goes to a power splitter. The purpose of the power splitter is to provide an IF output to the front panel. This output is identical in level to the other signal coming out of the splitter, which drives the LO port of the mixer/phase detector. This level is specified to be at least +7 dBm.

The RF input to the mixer/phase detector, 5 to 1280 MHz, is entered via the front panel. For measurements, the typical level is 0 dBm; for calibration, a lower level signal is used. The lower level signal is used during calibration so the Low Noise Amplifier is not overdriven. In phase noise measurement mode (Phase Detector Method), the mixer phase detects the RF and LO signals and outputs a dc signal. This dc output from the IF port of the mixer/phase detector has the baseband noise superimposed on it.

The output of the mixer/phase detector goes to the A3 Low Pass Filter Board Assembly, covered on Service. Sheet 2. The signal is then output to the A5 Phase Lock Board Assembly, covered on Service Sheet 3.

AM Option (Option 130)

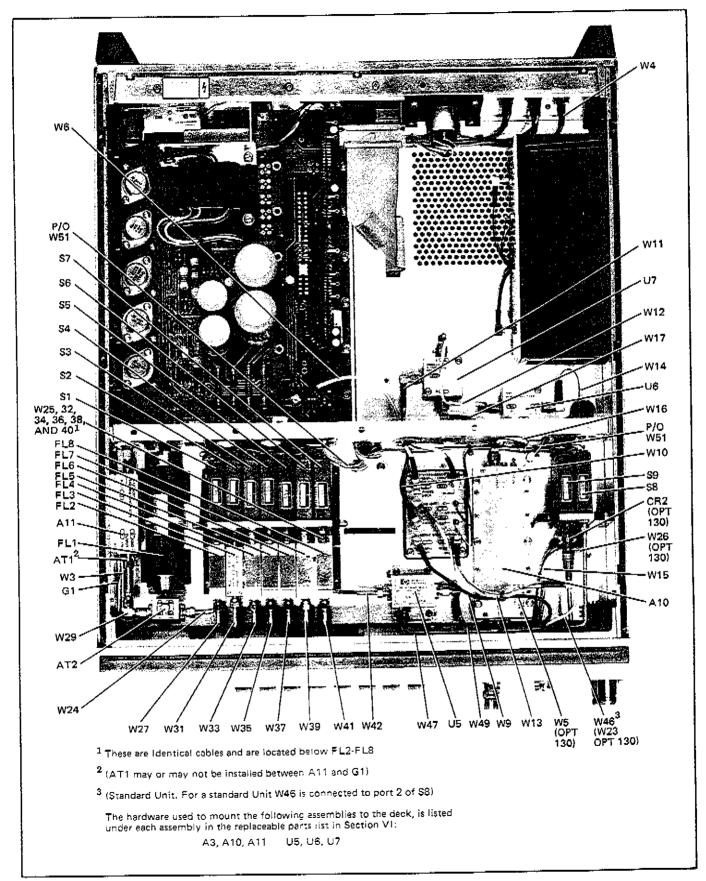
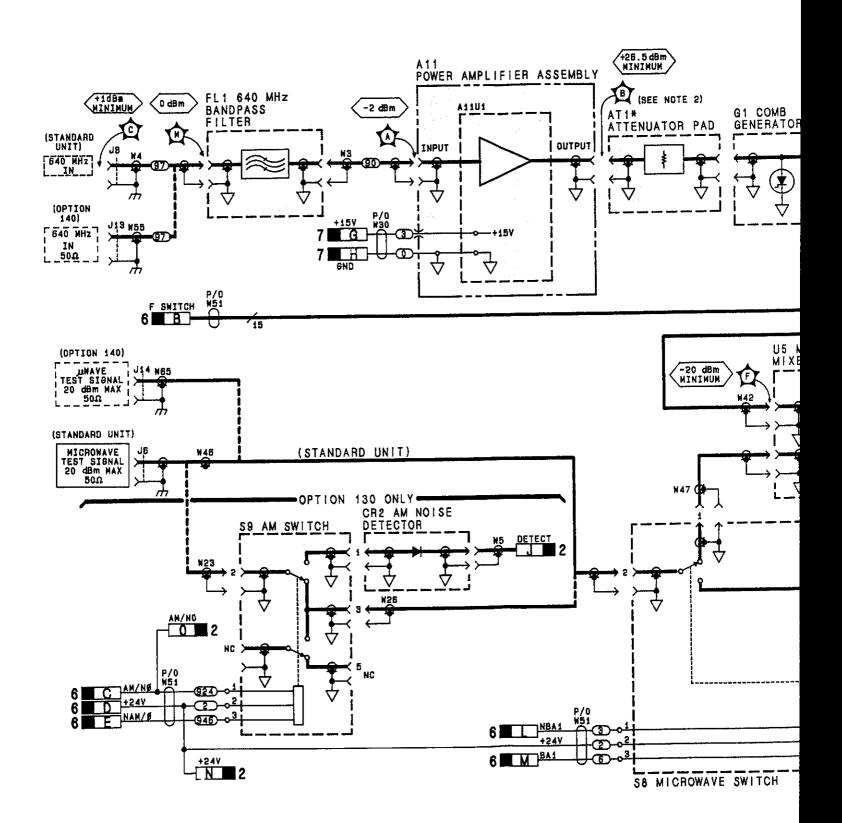
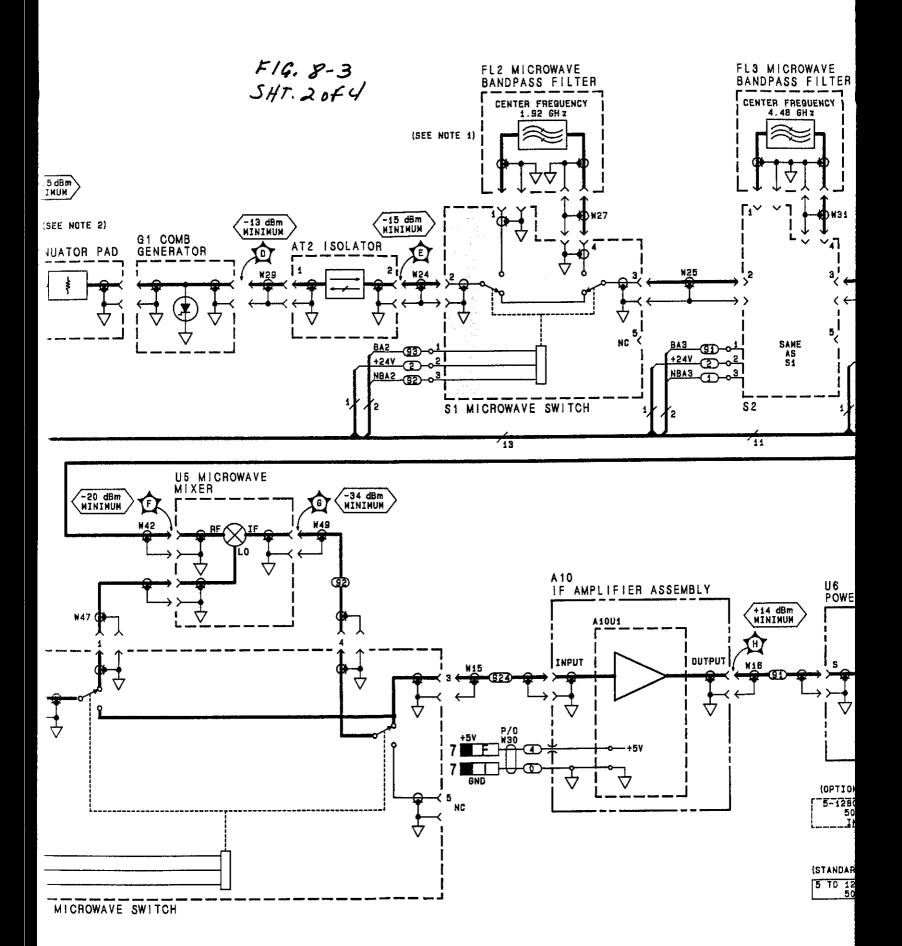
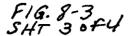
The AM option (Option 130) measures AM noise instead of phase noise. This option bypasses the microwave mixer and takes the microwave test signal directly into an AM detector. The output of the detector goes into the A3 Low Pass Filter Board Assembly, shown on Service Sheet 2.

TROUBLESHOOTING

Troubleshooting procedures are listed on the schematic.

Test Equipment

Microwave Synthesized SourceHP	8340A
RF Synthesized Signal Generator HP	8662A
(Opt	ion 003)
Power MeterHF	436A
OscilloscopeHF	1740A

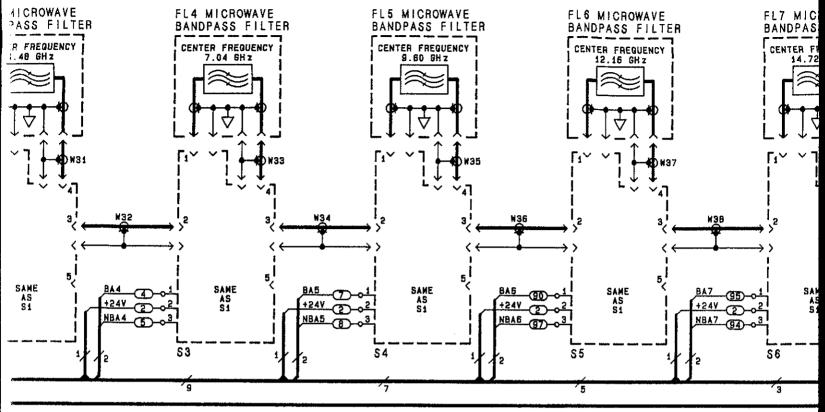

Figure 8-2. Reference Up-Conversion, Test Signal Down-Conversion and Phase Detecting Assembly Component Locations

FIG. 8-3 SHT. 10F4

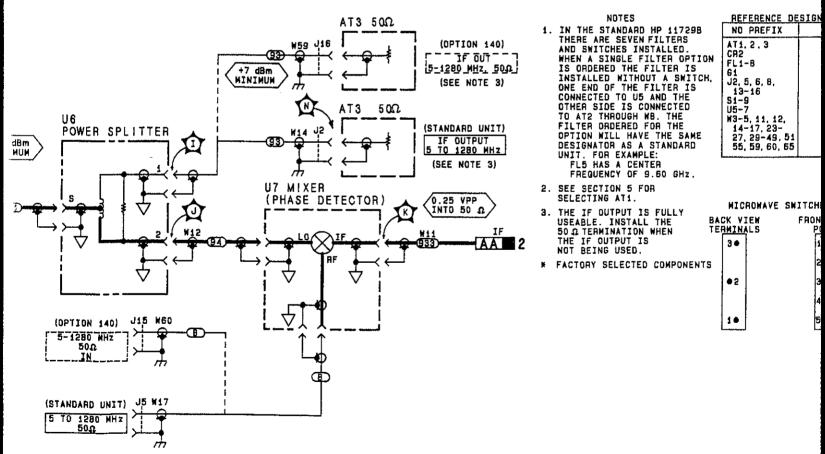


Figure 8-3.

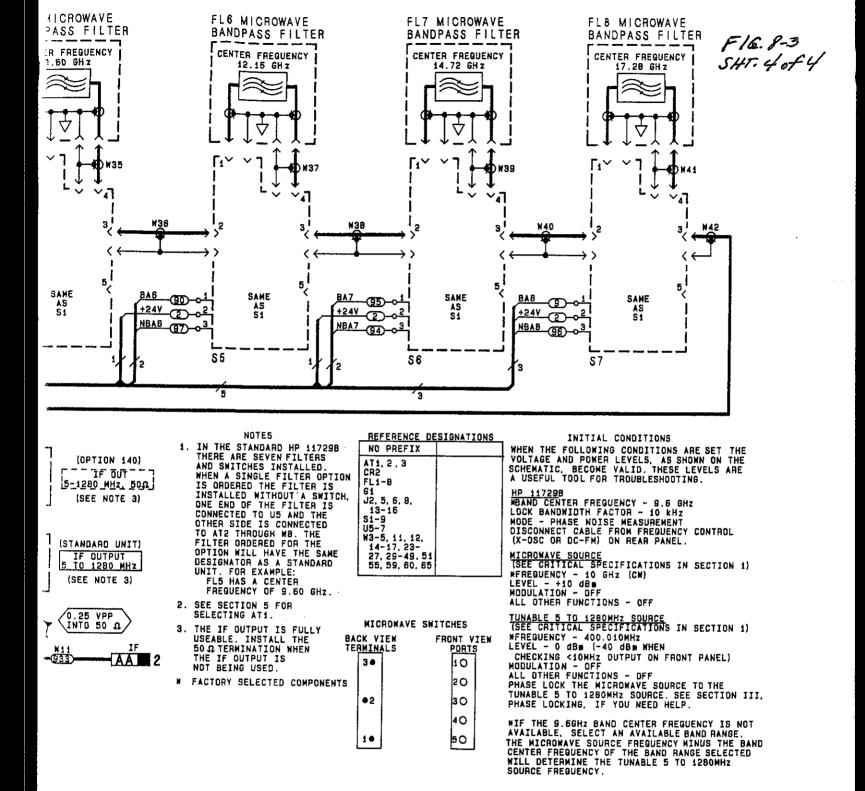


Figure 8-3. Reference Up-Conversion, Test Signal Down-Conversion and Phase Detecting Circuits Schematic Diagram

SERVICE SHEET 2 LOW PASS FILTER AND LOW NOISE AMPLIFIER CIRCUITS

PRINCIPLES OF OPERATION

General

Service Sheet 2 consists of the Low Pass Filter Board Assembly and the Low Noise Amplifier Assembly. The primary input to Service Sheet 2 is the IF signal from the mixer/phase detector, which is located on Service Sheet 1.

Low Pass Filter Board Assembly

General. The low pass filter assembly contains 2 low pass filters: a 15 MHz filter and a 1.5 MHz filter. R1 and C1, located at the input to the 15 MHz filter, appear as 50 ohms to high frequency signals. Relay K1 separates the AM-DET input from the IF input. The separation is needed because of noise that may be added to an AM noise measurement from the IF input.

15 MHz Filter. This is a Chebyshev low pass filter (that is, it has good attenuation near cutoff at the expense of allowing ripple in the passband). This filter is flat to 10 MHz. The 3 dB corner frequency occurs at approximately 15 MHz.

 600Ω is used for the auxiliary noise and the 1.5 MHz filter so as to not interfere with the 50 ohm match between the 15 MHz filter and the low noise amplifier.

1.5 MHz Filter. This filter is a five element Chebyshev filter. It is flat to 1 MHz and the 3 dB point is at 1.5 MHz. The 1.5 MHz filter removes any unwanted mixer products (such as LO feedthrough) that may have passed through the 15 MHz filter.

Low Noise Amplifier Assembly

General. The Low Noise Amplifier Assembly consists of a preamplifier and a power amplifier. The pre-amplifier provides most of the voltage gain and the power amplifier provides most of the current gain for the assembly. The low noise amplifier has one primary input and one output; both are 50Ω .

Pre-amplifier. The input stage of the low noise amplifier takes a signal and amplifies it with a cascode input stage consisting of Q1 and Q2. This stage drives Q3, which is a voltage follower to buffer the output of Q1. Feedback is applied from the output of Q3 to the base of Q2 to allow the input of the amplifier to look like 50 ohms.

E1 and E2 (on the base of Q1 and Q5, respectively) prevent oscillations around $600~\mathrm{MHz}$.

Between Q3 and Q5, there is a long signal path that is somewhat inductive. C7 is physically located halfway along this path. It peaks the frequency response that would otherwise be lost because of the inductance of the path, thus flattening the gain beyond 20 MHz.

SERVICE SHT 2 SHT 2 of 3

AND LOW NOISE AMPLIFIER CIRCUITS

PERATION

sts of the Low Pass Filter Board Assembly and ifier Assembly. The primary input to Service mal from the mixer/phase detector, which is seet 1.

rd Assembly

s filter assembly contains 2 low pass filters: a 5 MHz filter. R1 and C1, located at the input to ppear as 50 ohms to high frequency signals. he AM-DET input from the IF input. The sepause of noise that may be added to an AM noise in IF input.

a Chebyshev low pass filter (that is, it has good off at the expense of allowing ripple in the r is flat to 10 MHz. The 3 dB corner frequency ely 15 MHz.

ixiliary noise and the 1.5 MHz filter so as to not ohm match between the 15 MHz filter and the

Iter is a five element Chebyshev filter. It is flat dB point is at 1.5 MHz. The 1.5 MHz filter ted mixer products (such as LO feedthrough) d through the 15 MHz filter.

r Assembly

loise Amplifier Assembly consists of a prer amplifier. The pre-amplifier provides most of the power amplifier provides most of the curmbly. The low noise amplifier has one primary both are 50Ω .

put stage of the low noise amplifier takes a it with a cascode input stage consisting of Q1 rives Q3, which is a voltage follower to buffer dback is applied from the output of Q3 to the input of the amplifier to look like 50 ohms.

se of Q1 and Q5, respectively) prevent oscilla-

there is a long signal path that is somewhat cally located halfway along this path. It peaks se that would otherwise be lost because of the h, thus flattening the gain beyond 20 MHz.

SERVICE SHEET 2 (cont'd)

Power Amplifier. Transistors Q5 and Q6 operate similarly to the cascode amplifier of Q1 and Q2.

Q7 and Q9, the beginning of the output stage of the power amplifier, are driven by the diode chain. For ac purposes, the inputs to Q7 and Q9 are identical. Q7 and Q9 are both voltage followers and drive their respective output transistors Q8 and Q10. R26 provides the proper output impedance for the circuit. It was selected so the output looks like 50 ohms.

TROUBLESHOOTING

The following information is supplied to assist in troubleshooting the Low Noise Amplifier.

Test Equipment

Microwave Synthesized Source	НР	8340A		
RF Synthesized Signal Generator	НР	8662A	(Option	003)
Spectrum Analyzer	HP	8566A	• •	·
Oscilloscope	HP	1740A		
Digital Multimeter	\dots HP	3456A		

- 1. Connect a 640 MHz specturally pure signal to the 640 MHz rear panel input.
- 2. Connect a 10 GHz synthesized signal at a level of +10 dBm to the MICROWAVE TEST SIGNAL INPUT connector on the front panel.
- 3. Connect a 400.1 MHz synthesized signal at a level of -40 dBm to the 5-1280 MHz INPUT connector on the front panel.
- 4. Set the Carrier Noise Test Set as follows:

Measurement mode			
BAND Range	8.32 to	10.88	GHz

- 5. Remove the top cover of the Carrier Noise Test Set.
- Disconnect the input cable (W10) to the Low Noise Amplifier.
 Connect an SMC(m) to BNC (f) adapter to the cable (W10).
 Connect a BNC cable from the adapter to a spectrum analyzer.
- 7. Verify that there is a 100 kHz beat note. Adjust the spectrum analyzer display to measure the level of the 100 kHz beat note.

The input power level to the Low Noise Amplifier should be: -48 dBm typical

If the power level measured is below the typical value, troubleshoot the Low Pass Filter on Service Sheet 2. If the measured power is correct, go to step 8.

- 8. Reconnect the input cable (W10) to the Low Noise Amplifier.
- 9. Connect the output connector (J2) on the Low Noise Amplifier to a spectrum analyzer. Measure the output power of the Low Noise Amplifier. The output power should be 40 dB higher than the input power.

The output power level of the Low Noise Amplifier should be as follows: -8 dBm typical

If the output power level measured is the typical value the Low Noise Amplifier if operating properly. If the measured power is incorrect go to step 10.

- 10. Turn off the Carrier Noise Test Set. Connect an SMC (f) 50 ohm termination to the output connector (J2) of the Low Noise Amplifier.
- 11. Remove the six screws that hold the Low Noise Amplifier board in the housing. Pull the Low Noise Amplifier board out of the housing. Place an insulating surface under the board to keep it from shorting out. Turn the Carrier Noise Test Set on.
- 12. Measure the voltage peak-to-peak at TP1 and TP4 using an oscilloscope set to AC coupling. The voltage measured should be as follows:

TP1 = 155 mVppTP4 = 255 mVpp

Use the voltages measured to isolate the failure to a particular section of the Low Noise Amplifier.

13. Disconnect the input cable to the Low Noise Amplifier. Use the following table of transistor base voltages to isolate the failure on the Low Noise Amplifier.

Transistor	Base Voltage
Q1	+7.6 Vdc
Q2	+5.1 Vde
Q3	+14.7 Vdc
Q 5	+14.0 Vdc
Q6	+3.9 Vdc
Q7	+13.9 Vdc
Q8	+13.1 Vdc
Q9	+11.1 Vdc
Q10	+11.0 Vdc

Q5 and Q6 operate similarly to the 2.

te output stage of the power amplifier, For ac purposes, the inputs to Q7 and are both voltage followers and drive stors Q8 and Q10. R26 provides the recircuit. It was selected so the output

supplied to assist in troubleshooting

rally pure signal to the 640 MHz rear

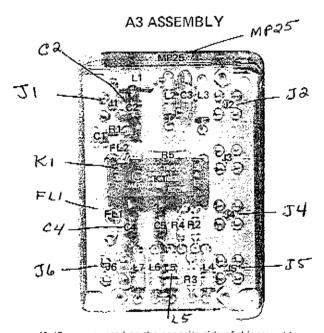
zed signal at a level of +10 dBm to the NAL INPUT connector on the front

nesized signal at a level of -40 dBm to connector on the front panel.

Set as follows:

......Phase Noise8.32 to 10.88 GHz

ie Carrier Noise Test Set.


e (W10) to the Low Noise Amplifier. BNC (f) adapter to the cable (W10). In the adapter to a spectrum analyzer.

kHz beat note. Adjust the spectrum re the level of the 100 kHz beat note.

e Low Noise Amplifier should be: –48

ed is below the typical value, troubleon Service Sheet 2. If the measured 8.

Reference Up-Conversion, Test Signal Down-Conversion and Phase Detecting Circuits SERVICE SHEET

 ${\sf J1-J6}$ are mounted on the opposite side of this assembly

Figure 8-4. Low Pass Filter Board Assembly Component Locations

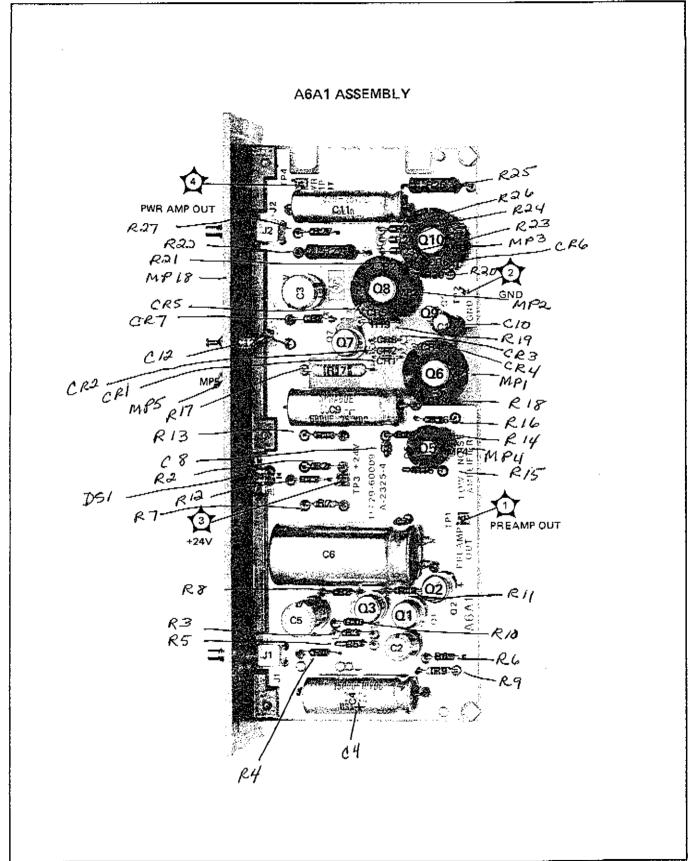
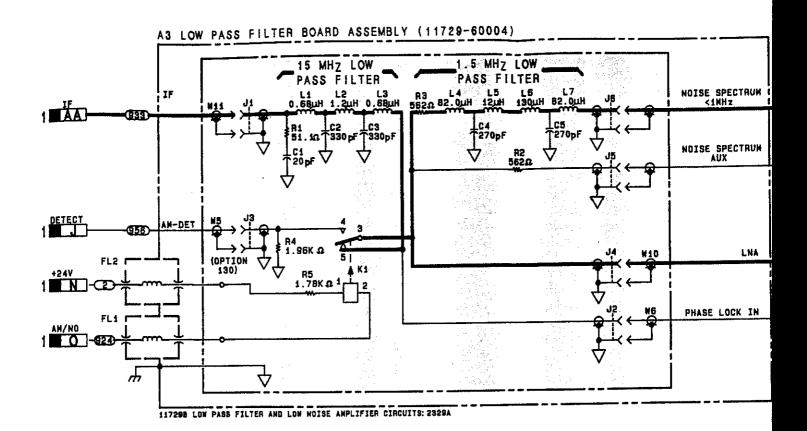



Figure 8-5. Low Noise Amplifier Assembly Component Locations

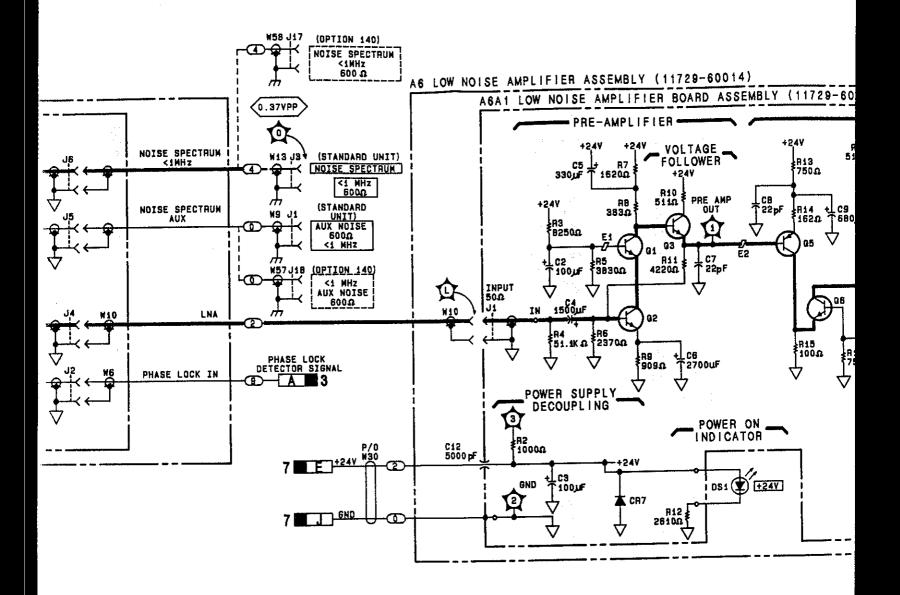
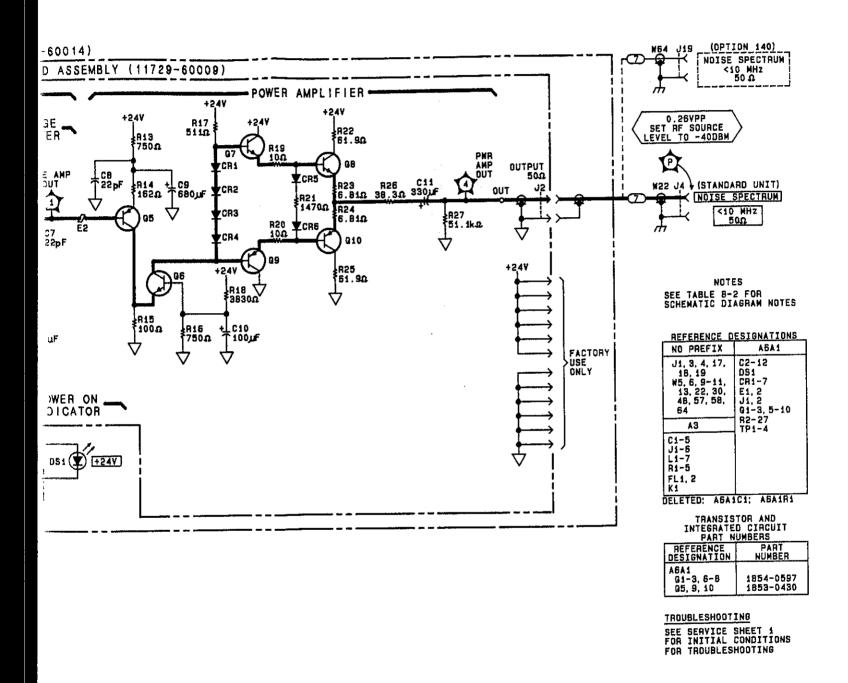



FIG. 8-6 SHT. 3 of 3

A3, A6, A6A1

Figure 8-6. Low Pass Filter and Low Noise Amplifier Schematic Diagrams

SERVICE SHT 3

SERVICE SHEET 3 PHASE LOCK CIRCUITS

5HT. 10f6

PRINCIPLES OF OPERATION

General

The A5 Phase Lock Board Assembly is a four-stage amplifier that amplifies the output of the mixer/phase detector (see Service Sheet 1). The amplifier has two stages of fixed gain and two stages of switchable gain.

The outputs from this assembly, labeled FREQ-CONT DC-FM and FREQ-CONT X-OSC, go to the rear panel of the instrument. The difference in the two outputs is the FREQ-CONT X-OSC ($\pm 10V$) is a factor of 10 volts more than FREQ-CONT DC-FM ($\pm 1V$).

Input Amplifier

The input stage is U2A. This is a fixed gain stage. Operational amplifier U2A has a gain of 10. This stage sums various inputs to the phase lock circuit, among them a DC offset signal and LOOP TEST signal. When the tunable 5 to 1280 MHz signal and the device under test are phase locked, the DC offset has no effect. When they are out of lock, the DC offset ultimately shows up on the front panel as an out of lock indication. The DC offset signal is injected by a variable resistor connected to the +15V supply. The unlocked display adjustment (R5, UNLK DSP) is set to light the red LED, which is adjacent to the center green LED on the front panel indicator, when an out of lock condition occurs.

Switchable Gain Amplifier

Second stage amplifier U2B is the first switchable gain stage. CMOS switches control the gain of this stage by switching input resistors in and out of the circuit. The feedback resistor, R25, is fixed. (Gain is equal to minus the value the feedback resistor divided by the value of the input resistor.) In the second stage the gain can be switched by a factor of 100. The lock bandwidth factor that is selected on the front panel determines the switching factor. For a lock bandwidth factor of 1, the net gain of the second stage is 0.068 (R25 divided by R19). For a lock bandwidth factor of 10, the net gain is .681 (R25 divided by R18 and R19 in parallel). For any of the other lock bandwidth factors, the net gain is 6.81 (R25 divided by R17 plus the output impedance of U2A [175 ohms]). When the CAPTURE button on the front panel is pressed, the second stage amplifier is set to a fixed gain of 1.61 (R25 divided by R20 and R19 in parallel), regardless of the lock bandwidth factor setting.

The third stage, U2C, is also a switchable gain stage. The third stage adjusts the gain for lock bandwidth factors that remain constant in the second stage. For lock bandwidth factors of 1, 10 and 100, the gain of the third stage is a constant 0.1 (R41 divided by R29). For a lock bandwidth factor of 1000, the gain is 1 (R41 divided by R28 and R29 in parallel), and for a lock bandwidth factor of 10 000, the gain is 10 (R41 divided by R27 plus the out impedance of U2B [175 ohms]). When the CAPTURE button on the front panel is pressed, the third stage amplifier is set to a fixed gain of 1 (R41 divided by R29 and R32 in parallel), regardless of the lock bandwidth factor setting.

Integrator

This is the fourth stage of the amplifier. The integrator provides high DC gain but a gain of 1 for frequencies higher than 0.2 Hz. Capacitors C4 and C5 are

SERVICE SHEET 3 (co

switched in or out of the the front panel CAPTUE these capacitors are remorded in addition, pressing C second and third stages width factor setting. An a second and third stages is released, the CMOS switter form an integrator with tion of C4 and C5, the philoop to a second order los follows:

The second order loop has gain increasing f second pole has gain dB/octave.

The second order loop: tor to be zero volts to degrees out of phase) b ble 5 to 1280 MHz sou

Fast Charge Circuit

The fast charge circuit to stage (U2D) while the Cocapacitors C4 and C5 to When CAPTURE is relethe circuit, a long time debecause they are already

Capture Control

Comparator. When CAP' a 0V capture signal to t signal goes to comparat These relays switch C4 a pressed.

Out-of-Lock Detector. The of the input amplifier (U OV, depending on the volume signal is within the lock Vdc), it outputs +5 volts of that range, it outputs that This signal goes to the A The signal is used for operation).

Display Drive. The output display drive circuit, white tor. The display center phase lock indicator for output. The display deviation of amplifier U1B a

SERVICE SHT 3

SERVICE SHEET 3 (cont'd) 5HT, 2of 6

switched in or out of the fourth stage depending on whether or not the front panel CAPTURE key is pressed. If CAPTURE is pressed, these capacitors are removed from the circuit. The DC gain is then 1. In addition, pressing CAPTURE also changes the gain of the second and third stages to a fixed gain regardless of the lock bandwidth factor setting. An additional CMOS switch is provided for the second and third stages for the capture signal. When CAPTURE is released, the CMOS switches connect C4 and C5 into the circuit to form an integrator with the fourth stage amplifier. With the addition of C4 and C5, the phase lock loop is switched from a first order loop to a second order loop. The characteristics of this loop are as follows:

The second order loop has two poles (break points). The first pole has gain increasing from .15 Hz to 0 Hz at 12 dB/octave. The second pole has gain decreasing from .15 Hz to infinity at 6 dB/octave.

The second order loop forces the output of the mixer/ phase detector to be zero volts to maintain phase quadrature (that is, 90 degrees out of phase) between the device under test and the tunable 5 to 1280 MHz source.

Fast Charge Circuit

The fast charge circuit tracks the voltage coming out of the fourth stage (U2D) while the CAPTURE key is depressed. It precharges capacitors C4 and C5 to the same voltage as the output of U2D. When CAPTURE is released and the capacitors are switched into the circuit, a long time delay is not required to charge the capacitors because they are already precharged to the correct voltage level.

Capture Control

Comparator. When CAPTURE is pressed, the microprocessor sends a 0V capture signal to the A5 Phase Lock Board Assembly. This signal goes to comparator U1A, which controls relays K1 and K2. These relays switch C4 and C5 out of the circuit when CAPTURE is pressed.

Out-of-Lock Detector. The out-of-lock detector monitors the output of the input amplifier (U2A). It produces an output of either +5V or 0V, depending on the voltage of the signal that it is sampling. If the signal is within the lock range (\pm a few tenths of a volt around 0 Vdc), it outputs +5 volts denoting phase lock. If the signal is outside of that range, it outputs 0 volts, indicating the out-of-lock detection. This signal goes to the A9 Microprocessor Assembly for processing. The signal is used for out-of-lock detection over HP-IB (remote operation).

Display Drive. The output of the input amplifier (U2A) goes to the display drive circuit, which drives the front panel phase lock indicator. The display center adjustment (R37, DSP CNTR) centers the phase lock indicator for quadrature (0V from the mixer/phase detector). The display deviation adjustment (R35, DSP DEV) adjusts the gain of amplifier U1B and sets the phase lock indicator range to

SERVICE SHEET 3 (cont'd)

cover the range of the amplified signal fredetector.

Buffer. The buffer drives the LOOP TEST PO signal is used to characterize the loop transfer lock loop (if required).

Bandwidth Control

The front panel setting of the lock bandwidth mines the gain of the switchable gain amplifi switches are read by the microprocessor. The sets CMOS latch U7. The output of that latch riate CMOS switches for the corresponding lo

Offset Voltage Source

The offset voltage source consists of a +5V source. VR2 drops the -15V supply down to -5 supply down to +5V. The +5V and -5V signals are connected to variable resistor R34, whice voltage adjustment for the switchable gain at of the offset adjustment is to compensate for accumulate in the amplifier stages. The analyolt supplies give an added layer of regulating precise voltage — this lessens the effect due circuit changes that might cause the plus and to change slightly. Because the out-of-lock indicise voltage, it is driven by these power supplies

A1 Indicator Board Assembly

The Indicator Board Assembly takes an anal to control an LED display.

R1 and R2 set the voltage at which the LEDs co of U1 will turn on. One LED is set to turn of increase on pin 5 of U1. The resistors connecte LEDs allow those LEDs to be dimmer than t resistors in parallel.

U2 is a +5 volt regulator. +15 volts is input to I volts is output.

TROUBLESHOOTING

The following procedure will help to isolate a p Lock Board, to a particular stage on the scheme

Test Equipment

Function Generator	.HP	3312
Oscilloscope	.HP	1740

Connect the following test set up as shown.

SERVICE SHEET 3 (cont'd) 5HT. 3 of 6

cover the range of the amplified signal from the mixer/phase detector.

Buffer. The buffer drives the LOOP TEST PORT OUT signal. This signal is used to characterize the loop transfer function of the phase lock loop (if required).

Bandwidth Control

ıŧ

e

1-

٦e

is

o

ì-

r

s

e e

3

")

٠3

The front panel setting of the lock bandwidth factor switches determines the gain of the switchable gain amplifier. These front panel switches are read by the microprocessor. The microprocessor then sets CMOS latch U7. The output of that latch actuates the appropriate CMOS switches for the corresponding lock bandwidth factor.

Offset Voltage Source

The offset voltage source consists of a +5V regulator and a -5V source. VR2 drops the -15V supply down to -5V; U8 drops the +15V supply down to +5V. The +5V and -5V signals go into resistors that are connected to variable resistor R34, which provides the offset voltage adjustment for the switchable gain amplifier. The purpose of the offset adjustment is to compensate for any dc offsets that accumulate in the amplifier stages. The analog plus and minus 5 volt supplies give an added layer of regulation to provide a more precise voltage — this lessens the effect due to line changes and circuit changes that might cause the plus and minus 15 volt supplies to change slightly. Because the out-of-lock indicator requires a precise voltage, it is driven by these power supplies.

A1 Indicator Board Assembly

The Indicator Board Assembly takes an analog voltage and uses it to control an LED display.

R1 and R2 set the voltage at which the LEDs connected to the output of U1 will turn on. One LED is set to turn on for each ± 0.3 volt increase on pin 5 of U1. The resistors connected in parallel with the LEDs allow those LEDs to be dimmer than the LEDs without the resistors in parallel.

U2 is a ± 5 volt regulator. ± 15 volts is input to U2 and a regulated ± 5 volts is output.

TROUBLESHOOTING

The following procedure will help to isolate a problem, on the Phase Lock Board, to a particular stage on the schematic.

Test Equipment

Function Generator	HP 3312A
Oscilloscope	HP 1740A

Connect the following test set up as shown.

SERVICE SHEET 3 (cont'd)

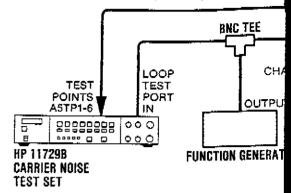


Figure 8-7. Phase Lock Board Troubles

Set the function generator as follows:

Wave form: Sine wave Frequency: 100 Hz Level: Minimum

Set the Carrier Noise Test Set as follows: Measurement Mode: Phase Noise Lock Bandwidth Factor: 1

- 1. Turn the Carrier Noise Test Set off an
- On the A3 Low Pass Filter Assembly di the IF input connector J1. Connect an J1.
- 3. On the A5 Phase Lock Board Assembly
- 4. Connect the function generator to LOC rear panel. Turn the Carrier Noise Tes
- 5. On the oscilloscope set the coupling co
- Adjust the level of the function general channel one of the oscilloscope.
- 7. On the oscilloscope set channel two to
- 8. Connect channel two to Test Point 1 Board. Adjust the volts/division to vie
- 9. Adjust the DC offset on the function display on channel two.
- 10. Measure the typical peak-to-peak volta and 4, on the A5 assembly, for Lock Ban The Lock Bandwidth Factor keys are pare the measured voltages to the typic following table.

SHT. 4 of 6

mixer/phase

'signal. This of the phase

vitches detere front panel ocessor then s the appropwidth factor.

r and a -5V
ps the +15V
esistors that
s the offset
The purpose
offsets that
nd minus 5
vide a more
nanges and
olt supplies
juires a pre-

and uses it

o the output h +0.3 volt tilel with the without the

gulated +5

n the Phase

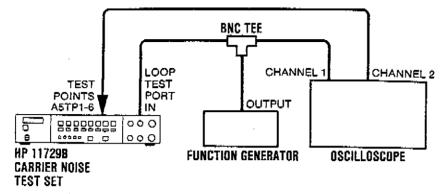


Figure 8-7. Phase Lock Board Troubleshooting Test Setup

Set the function generator as follows:

Wave form: Sine wave Frequency: 100 Hz Level: Minimum

Set the Carrier Noise Test Set as follows:

Measurement Mode: Phase Noise Lock Bandwidth Factor: 1

- 1. Turn the Carrier Noise Test Set off and remove the top cover.
- 2. On the A3 Low Pass Filter Assembly disconnect cable W11 from the IF input connector J1. Connect an SMC short to connector J1.
- 3. On the A5 Phase Lock Board Assembly put a short across A5C4.
- 4. Connect the function generator to LOOP TEST PORT IN on the rear panel. Turn the Carrier Noise Test Set on.
- 5. On the oscilloscope set the coupling control, for channel one to AC.
- 6. Adjust the level of the function generator for 5Vpp as read on channel one of the oscilloscope.
- 7. On the oscilloscope set channel two to DC coupling.
- 8. Connect channel two to Test Point 1 on the A5 Phase Lock Board. Adjust the volts/division to view the channel two input.
- 9. Adjust the DC offset on the function generator to center the display on channel two.
- 10. Measure the typical peak-to-peak voltages at Test Points 1,2, 3 and 4, on the A5 assembly, for Lock Bandwidth Factors 1 and 10. The Lock Bandwidth Factor keys are on the front panel. Compare the measured voltages to the typical voltages shown in the following table.

SERVICE SHEET 3 (cont'd)

Lock Bandwidth Factor	A
1 10	

11. With CAPTURE pressed, o to-peak voltages at Test Po Compare the measured vol in the following table.

Capture Button	A
Pressed	

- Using channel one set the l mVpp.
- 13. Set the LOCK BANDWID?
- 14. Connect channel two to T Board. Observe channel t volts/division to view the c
- 15. Adjust the DC offset on the display on channel two.
- 16. Measure the typical peak-t and 4,on the A5 assembly, 1k and 10k. The Lock Band panel. Compare the measur shown in the following tabl

With a Lock Bandwidt from Test Point 4 may highest gain setting.

Lock Bandwidth Factor	
LOCK BANDWIGHT FACTOR	
100	0
1k	0
10k	0

Low Pass Filter a

IN	IEL 2
_	
Ē	

over.

1 from

A5C4.

on the

one to

ead on

Lock input.

ter the

1,2, 3 nd 10. Comin the

had Bardaidh Fastar	Typical Peak-to-Peak Voltages			tages
Lock Bandwidth Factor	A5TP1	A5TP2	A5TP3	A5TP4
1 10	5V 5V	0.34V 3.4V	.034V 0.34V	0.034V 0.34V

11. With CAPTURE pressed, on the front panel, measure the peakto-peak voltages at Test Points 1,2,3 and 4 on the A5 assembly. Compare the measured voltages to the typical voltages shown in the following table.

R-1 P-11	Typical Peak-to-Peak Voltages			
Capture Button	A5TP1	A5TP2	A5TP3	A5TP4
Pressed	5 V	8 V	8V	8V

- 12. Using channel one set the level of the function generator to 100 mVpp.
- 13. Set the LOCK BANDWIDTH FACTOR, on the front panel, to 100.
- 14. Connect channel two to Test Point I on the A5 Phase Lock Board. Observe channel two on the oscilloscope. Adjust the volts/division to view the channel two input.
- 15. Adjust the DC offset on the function generator to center the display on channel two.
- 16. Measure the typical peak-to-peak voltages at Test Points 1,2,3 and 4,on the A5 assembly, for Lock Bandwidth Factors of 100, 1k and 10k. The Lock Bandwidth Factor keys are on the front panel. Compare the measured voltages to the typical voltages shown in the following table.

NOTE

With a Lock Bandwidth Factor of 10k the output from Test Point 4 may be clipped since this is the highest gain setting.

Lock Bandwidth Factor	Typical Peak-to-Peak Voltages			
LOOK DANOWIGHT 2010)	A5TP1	A5TP2	A5TP3	A5TP4
100	0.1V	0.68V	0.068V	0.068V
1k	0.1 V	0.68V	0.68V	0.68V
10k	0.1V	0.68V	6.8V	6.8V

Low Pass Filter and Low Noise Amplifier Circuits A3, A6, A6A1 SERVICE SHEET

Service

SERVICE SHEET 3 (cont'd)

17. Using a multimeter measure on the A5 assembly. Make TURE button, on the front button released. The voltage ing table.

Typical Voltages	Ca
A5TP5 A5TP6	

SERVICE SHT 3

SERVICE SHEET 3 (cont'd)

SHT. 6 of 6

17. Using a multimeter measure the voltage at Test Points 5 and 6, on the A5 assembly. Make one measurement with the CAPTURE button, on the front panel, pressed and then with the button released. The voltages should be as shown in the following table.

Typical Voltages	Capture Pressed	Capture Released
A5TP5	5V	<0.8V
A5TP6	<0.8V	5V

FIG.'S 8-8 & 8-9 SHT. 1 of 1

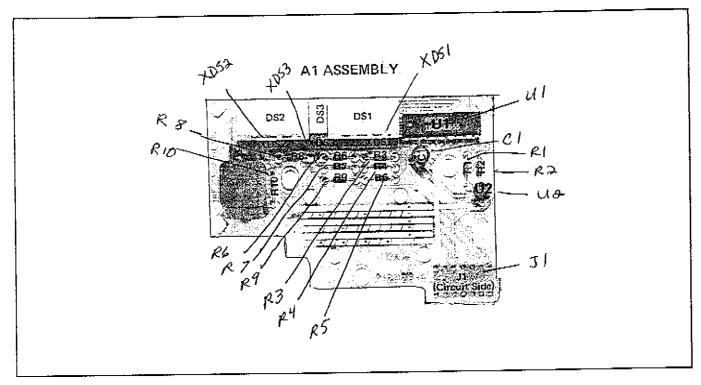


Figure 8-8. Indicator Board Assembly Component Locations

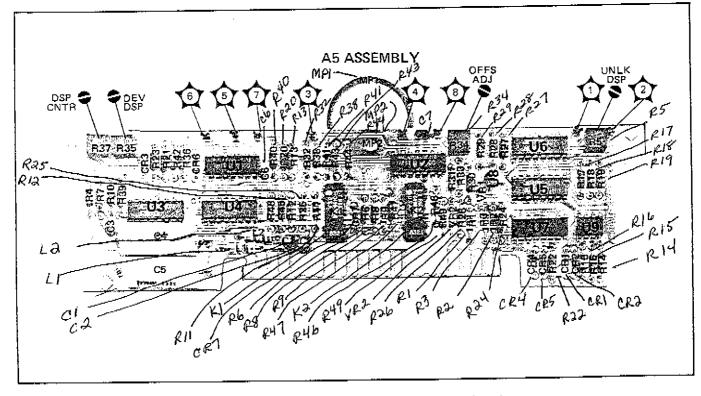
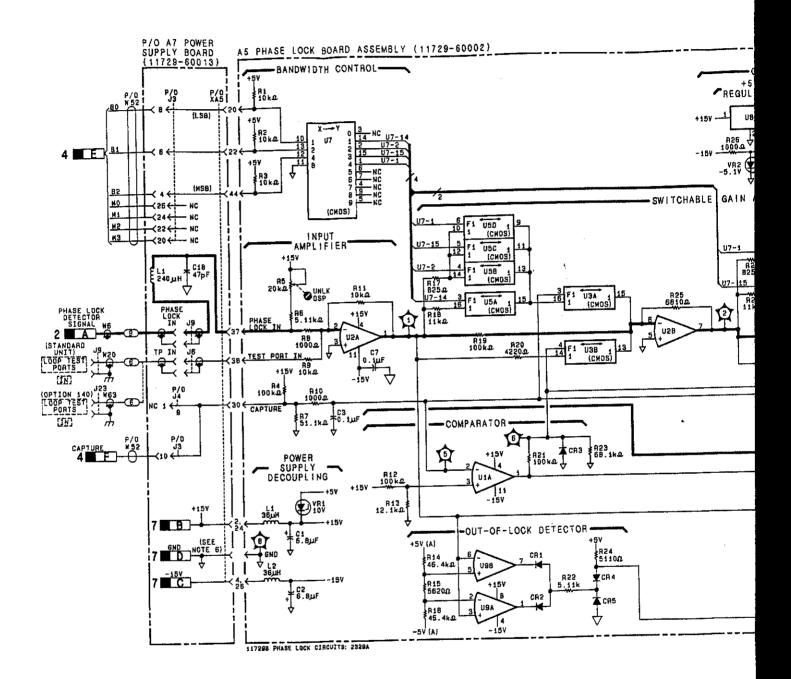
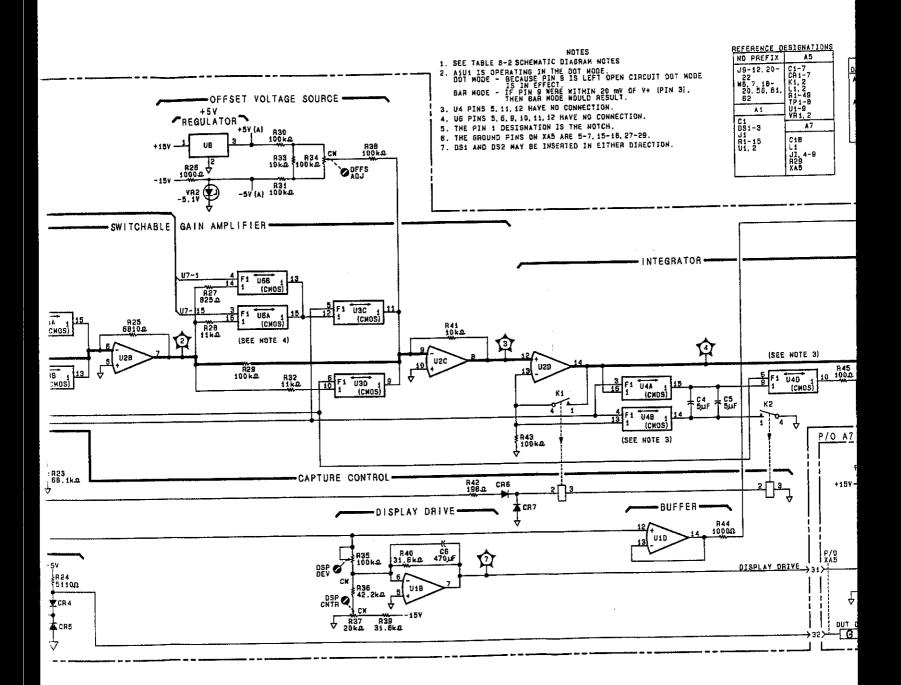




Figure 8-9. Phase Lock Board Assembly Component Locations

Service

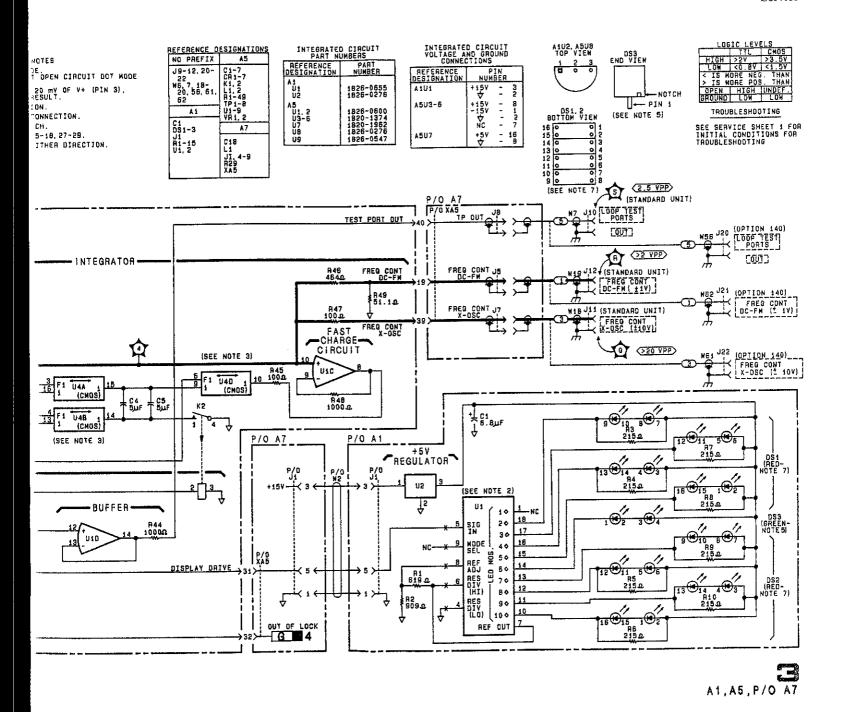


Figure 8-10. Phase Lock Circuit Schematic Diagram

SERVICE SHTY SHT. 1 OF 6

SERVICE SHEET 4 PRINCIPLES OF OPERATION

General

The A9 Microprocessor Board Assembly receives data from the A2 Front Panel Key and Display Board Assembly (local) or from HP-IB (remote).

Local inputs use the following circuits:

- a. keyboard encode,
- b. keyboard debounce circuit, and
- c. peripheral interface adapter (PIA).

The PIA manages local operation and monitors the out-of-lock signal from the A5 Phase Lock Board assembly.

Remote inputs use the following circuits:

- a. HP-IB management line transceiver.
- b. HP-IB data line transceiver, and
- c. HP-IB interface.

The HP-IB interface manages remote operation.

Keyboard Encode

The A2 Front Panel Key and Display Board Assembly consists of 16 keys. Keyboard encode U45, U46 and U39 are connected to these keys in such a way that it becomes a 1-of-16 priority encoder. Inputs to U45 and U46 are active low. When a key is pressed, the corresponding signal line goes to 0V. U45 and U46 sense the line and encodes it to a binary number.

Keyboard Debounce Circuit

U11B adds a 21 ms delay to ensure that a key has been depressed instead of a momentary spike that is being detected. If a key is held for 21 ms, the output of flip-flop U40B goes high. U6 pin 40 (CA1) acts as a flag. If there is a high signal on this line, the peripheral interface adapter informs the microprocessor that a key has been pressed.

Out-of-Lock Debounce Circuit

This circuit detects either a negative going edge (lock to out-of-lock) or positive going edge (out-of-lock to lock). In addition, it informs the microprocessor (via the PIA) of the change in condition. A change is detected immediately when the signal goes from lock to out-of-lock. When the signal goes from out-of-lock to lock, U11A causes a 9.7 ms delay before clocking the results to the peripheral interface adapter, which notifies the microprocessor of the change. When the microprocessor is informed of a change in state, it re-enables the circuitry by enabling U6 pin 14 (PB4), which causes flip-flop U40A to reset U53. The microprocessor then looks for a signal of the opposite sense on the input to U53. U6 pin 15 (PB5) keeps track of the signal sense that the microprocessor is expecting.

Peripheral Interface Adapter (PIA)

The PIA, U6, manages the exchange of information between the front panel and the microprocessor. Lines PB4-6 control the out-of-lock debounce circuitry. Line PB7, which drives the capture signal on the A5 Phase Lock Board assembly, is activated when the CAPTURE key is pressed. Lines PA0-3 and PA7 read the

SERVICE SHEET 4 (

keyboard encode circu pressed. Lines PA4-6 e

HP-IB Management

These transceivers allo (DIO1-8) and the hand HP-IB management li and the HP-IB data lin

HP-IB Interface

HP-IB interface U2 ms the microprocessor and of flow of information U34.

Remote inputs to the encoded control and da to the instrument via f The control lines are la allow the controller to and impart other apprlines are labeled DAV chronous control infor (controller) and the list for a more detailed explabeled DI01 through I

DAT
NOT VA

LISTENER
NRFD NOT READY

L

NDAC NOT

Start with the talker waiting indicating it is ready.

When the listener is ready, NF D101 through D108 and sets D

NRFD then goes low (true) and the data (or ignored it) by refe data is accepted).

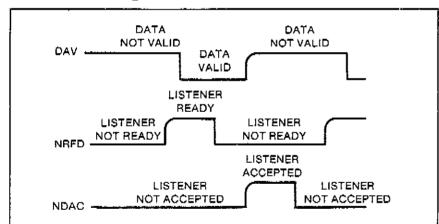
The talker sets DAV high (fals (NOTE that if ATN is true, all whether they are talkers, liste to do with handshaking. If AT

Figure 8-11. Simplified HP-1 and One

SERVICE SAT 4 SHT. 20+6

SERVICE SHEET 4 (cont'd)

keyboard encode circuits to monitor when a front panel key is being pressed. Lines PA4-6 generate the filter ranges.


HP-IB Management Transceiver and Data Line Transceiver

These transceivers allow bi-directional signal flow on the data lines (DIO1-8) and the handshake lines (DAV, NRFD, and NDAC). The HP-IB management line transceiver manages the handshake lines and the HP-IB data line transceiver manages the data lines.

HP-IB Interface

HP-IB interface U2 manages the exchange of information between the microprocessor and the HP-IB. U2 also determines the direction of flow of information through bi-directional transceivers U33 and U34.

Remote inputs to the Carrier Noise Test Set are in the form of encoded control and data information. Control information is input to the instrument via five control lines and three handshake lines. The control lines are labeled ATN, SRQ, REN, IFC and EOI. They allow the controller to gain the Carrier Noise Test Set's attention and impart other appropriate control information. The handshake lines are labeled DAV, NRFD, and NDAC. They provide asynchronous control information for data transfer between a talker (controller) and the listener (Carrier Noise Test Set). See Figure 8-11 for a more detailed explanation of handshake lines. Data lines are labeled DI01 through DI08.

Start with the talker waiting for the listener to release NRFD (not ready for data) indicating it is ready.

When the listener is ready, NRFD goes high (false). The talker then places valid data on D101 through D108 and sets DAV (data valid) low (true).

NRFD then goes low (true) and the talker waits for the listener to indicate it has accepted the data (or ignored it) by releasing the NDAC (not data accepted) to a high (false, i.e., data is accepted).

The talker sets DAV high (false) and again waits for the listener to release NRFD.

(NOTE that if ATN is true, all instruments on the bus must handshake regardless of whether they are talkers, listeners, or bystanders. Being in remote or local has nothing to do with handshaking. If ATN is false, they only handshake if addressed).

Figure 8-11. Simplified HP-IB Handshake between a Talker (Computer Controller) and One Listener (Carrier Noise Test Set)

SERVICE SHEET 4 (cont'd)

TROUBLESHOOTING USING SIGNATU

NOTE

Run the following tests in the sequen

Test Equipment

Address Decoding Check

Purpose. To verify the microprocessor can transfer that address to the selected chip. decoded at the chip.

Setup. Turn the Carrier Noise Test Set off a cover. Locate the A9 Microprocessor Board that hold the board in place. The A9 assembly board laying parallel to the bottom of the integral of the setup.

Connect the signature analyzer Timing Pod

- 1. START/ST/SP to SAST1 (A9TP4)
- 2. STOP/QUAL to SAST1 (A9TP4)
- 3. CLOCK to SACLK (A9TP3)
- 4. GND to GND (A9TP1)

Set the signature analyzer controls as follow

- 1. Function: Signature

Connect a jumper cable between NFREERI (A9TP1). Turn the Carrier Noise Test Set on

NOTE

The test setup conditions for the Add Check are the same for Service Sh therefore signatures may be taken c all three service sheets.

Connect the signature analyzer's probe to t Table 8-3 and verify the signatures.

Disconnect the signature analyzer and NFREERUN (A9TP5) and GND (A9TP1).

ROM Operation Check

Purpose. To verify that the microprocessor can ROM and then execute that code.

TROUBLESHOOTING USING SIGNATURE ANALYSIS

NOTE

Run the following tests in the sequence listed.

Test Equipment

Address Decoding Check

Purpose. To verify the microprocessor can generate an address, transfer that address to the selected chip. The correct address is decoded at the chip.

Setup. Turn the Carrier Noise Test Set off and remove the bottom cover. Locate the A9 Microprocessor Board. Remove the 3 screws that hold the board in place. The A9 assembly is the Printed Circuit board laying parallel to the bottom of the instrument.

Connect the signature analyzer Timing Pod as follows:

- 1. START/ST/SP to SAST1 (A9TP4)
- 2. STOP/QUAL to SAST1 (A9TP4)
- 3. CLOCK to SACLK (A9TP3)
- 4. GND to GND (A9TP1)

Set the signature analyzer controls as follows:

1. Function: Signature	Normal
2. Polarity: Clock	Falling edge (2) Rising edge (1) Rising edge (1)

Connect a jumper cable between NFREERUN (A9TP5) and GND (A9TP1), Turn the Carrier Noise Test Set on.

NOTE

The test setup conditions for the Address Decoding Check are the same for Service Sheets 4,5 and 6, therefore signatures may be taken concurrently on all three service sheets.

Connect the signature analyzer's probe to the points indicated in Table 8-3 and verify the signatures.

Disconnect the signature analyzer and the short between NFREERUN (A9TP5) and GND (A9TP1).

ROM Operation Check

Purpose. To verify that the microprocessor can read the data stored in ROM and then execute that code.

SERVICE SHEET 4 (cont'd)

Table 8-3. Signatures for Verifying Address Decoding

Pin	U2	U6
8	1376	
9	0000	<u></u>
10	0003	_
21	UUUU	0003
22	FFFF	0003
23	8484	9668
24	_	0003
35	_	UUUU
36	_	FFFF

Setup. Set the diagnostic switch A9S2 (right s the ROM test position shown below.

Diagnostic Switch S2	ROM Test Logic Level
1	0
2	1
3	0
4	0

Locate the 8 Red LEDs between U27 and U28 are numbered D0-D7 with D7 being the LED portion of the microprocessor board assembly

Turn the Carrier Noise Test Set on to reset th

Check the pattern of the flashing LEDs to see:

ROM Passes Test — D5 remains on and all the and off. This verifies that the address and ROM and the microprocessor are working.

ROM Fails Test — D5 remains on and all the of This signifies that the address and data but Check for short circuits.

RAM Operation Check

Purpose. To verify that the RAM is operation

Setup. Set the diagnostic switch A9S2 to the shown below.

Diagnostic Switch S2	RAM Test Logic Level
1	1
2	0
3	0
4	0

Table 8-3. Signatures for Verifying Address Decoding

Pin	U2	U6
8	1376	
9	0000	_
10	0003	-
21	טטטט	0003
22	FFFF	0003
23	8484	9668
24	_	0003
35	_	บบบบ
36	_	FFFF

Setup. Set the diagnostic switch A9S2 (right side of A9 assembly) to the ROM test position shown below.

Diagnostic Switch S2	ROM Test Logic Level
1	0
2	1
3	0
4	0

Locate the 8 Red LEDs between U27 and U28. The individual LEDs are numbered D0-D7 with D7 being the LED closest to the hinged portion of the microprocessor board assembly.

Turn the Carrier Noise Test Set on to reset the instrument.

Check the pattern of the flashing LEDs to see if ROM passes the test.

ROM Passes Test — D5 remains on and all the other LEDs flash on and off. This verifies that the address and data busses between ROM and the microprocessor are working.

ROM Fails Test — D5 remains on and all the other LEDs remain off. This signifies that the address and data busses have a problem. Check for short circuits.

RAM Operation Check

Purpose. To verify that the RAM is operational.

Setup. Set the diagnostic switch A9S2 to the RAM test position shown below.

RAM Test Logic Level
1
0
} o
0

RE ANALYSIS

nce listed.

 $05\mathbf{B}$

1 generate an address, The correct address is

and remove the bottom 1. Remove the 3 screws ly is the Printed Circuit astrument.

as follows:

NS:

...... Normal

..... Falling edge (2)
..... Rising edge (1)
..... Rising edge (1)

UN (A9TP5) and GND

ddress Decoding heets 4,5 and 6, concurrently on

, the points indicated in

ad the short between

can read the data stored

SERVICE SHEET 4

Turn the Carrier No.

Check the pattern of

RAM Passes Test the counting sequence can access RAM pro

RAM Fails Test — I sequence. This show may be faulty.

Turn the Carrier No

Signature Analysis

Purpose. The Microp of data from the Mic and the HP-IB Inter

Connect the signatu

- 1. START/ST/SP t
- 2. STOP/QUAL to
- 3. CLOCK to SACI
- 4. GND to GND (A

Set the signature ar

- 1. Function: Signat
- 2. Polarity: Clock . Start..

Stop ..

Set the Diagnostic

	Diagnostic Switch S2	
Ì	1	
١	2	
Į	3	
	4	

Turn the Carrier N the signature anal and verify the sign

> The test set Test are the fore signat three service

Turn the Carrier Noise Test Set off then on to reset the instrument.

Check the pattern of the flashing LEDs to see if RAM passes the test.

RAM Passes Test — D4 is on and D0-D3 count, all LEDs turn on then the counting sequence repeats. This verifies that the microprocessor can access RAM properly.

RAM Fails Test — D4 is on but D0-D3 do not go through counting sequence. This shows that the RAM or the control lines to the RAM may be faulty.

Turn the Carrier Noise Test Set off.

Signature Analysis Test - Microprocessor and I/O Check

Purpose. The Microprocessor runs a program to verify transmission of data from the Microprocessor to the Peripheral Interface Adapter and the HP-IB Interface.

Connect the signature analyzer Timing Pod as follows:

- 1. START/ST/SP to SAST2 (A9TP6)
- 2. STOP/QUAL to SAST2 (A9TP6)
- 3. CLOCK to SACLK (A9TP3)
- 4. GND to GND (A9TP1)

y) to

EDs ged

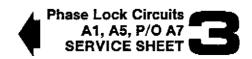
test. h on veen

off. lem.

tion

Set the signature analyzer controls as follows:

1.	Function: Signature		Normal
		Falling	
	Start	Rising	edge (1)
	Stop	Falling e	edge (2)


Set the Diagnostic Switch A9S2 as follows:

Diagnostic Switch S2	Signature Analysis Test Logic Level
1	1
2	1
3	0
4	0

Turn the Carrier Noise Test Set on to reset the diagnostic. Connect the signature analyzer's probe to the points indicated in Table 8-4 and verify the signatures.

NOTE

The test setup conditions for the Signature Analysis Test are the same for Service Sheets 4,5 and 6, therefore signatures may be taken concurrently on all three service sheets.

Service

SERVICE SHEET 4 (cont'd)

Table 8-4. Signatures for Verifying Mi Input/Output Operation

Pin	U2	U6	Pin
6		C8P8	22
7		5HF2	23
8	6978	FP47	24
9	P04P	0000	26
10	UHU1	C6FA	27
11	-	4A88	28
12	P8CF	92H3	29
13	4771	5 F 06	30
14	AF7U	F1A0	31
15	6U22	99CH	32
16	068C	-	33
17	P66C	-	35
18	866F		36
19	F3F8	3P71	39
21		UHUı	

Figure 8

Table 8-4. Signatures for Verifying Microprocessor and Input/Output Operation

Pin	U2	U6		Pin	U2	U6
6	_	C8P8		22	_	1HCU
7	_	5HF2		23	_	3361
8	6978	FP47	П	24	_	1HCU
9	P04P	0000	Ш	26		F3F8
10	UHU1	C6FA	Ш	27	_	866F
11	_	4A88	Ш	28	_	P66C
12	P8CF	92H3	Ш	29	_	068C
13	4771	5F06	H	30	_	6U22
14	AF7U	F1A0	ļ	31	_	AF7U
15	6Ŭ22	99CH	1	32	_	4771
16	068C	i –		33	_	P8CF
17	P66C	_		35	_	U46P
18	866F	_	lİ	36	_	675A
19	F3F8	3P71	H	39		7 F 37
21	_	UHU1				

Disconnect the signature analyzer timing pod.

Reset the Diagnostic Switch A9S2 to the normal operation position shown as follows:

Diagnostic Switch S2	Normal Operation Logic Level
1	1
2	1
3	1
4	1

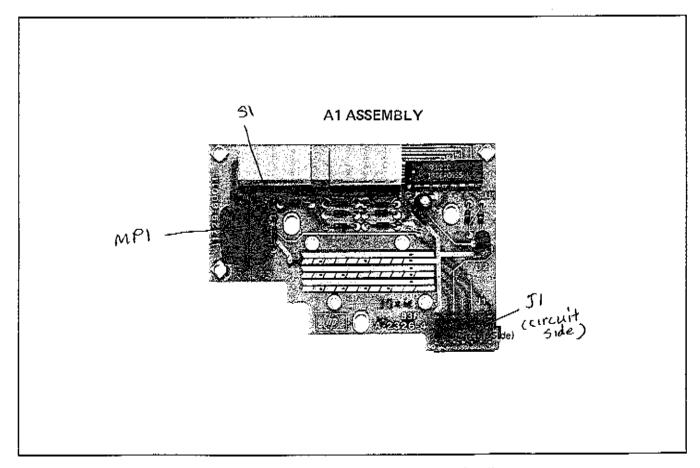


Figure 8-12. Indicator Board Assembly Component Locations

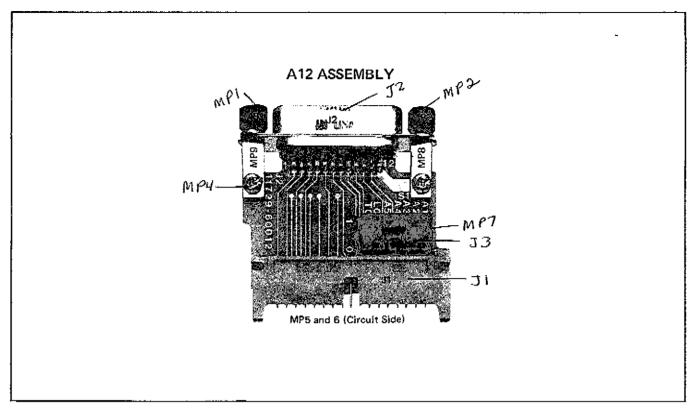


Figure 8-13. HP-iB Interconnect Board Assembly Component Locations

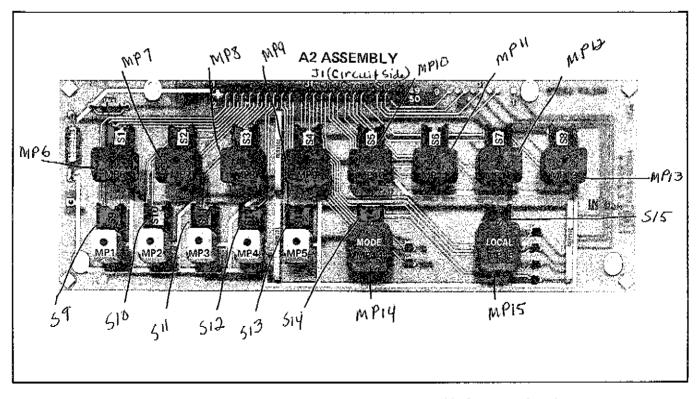


Figure 8-14. Front Panel Key and Display Board Assembly Component Locations

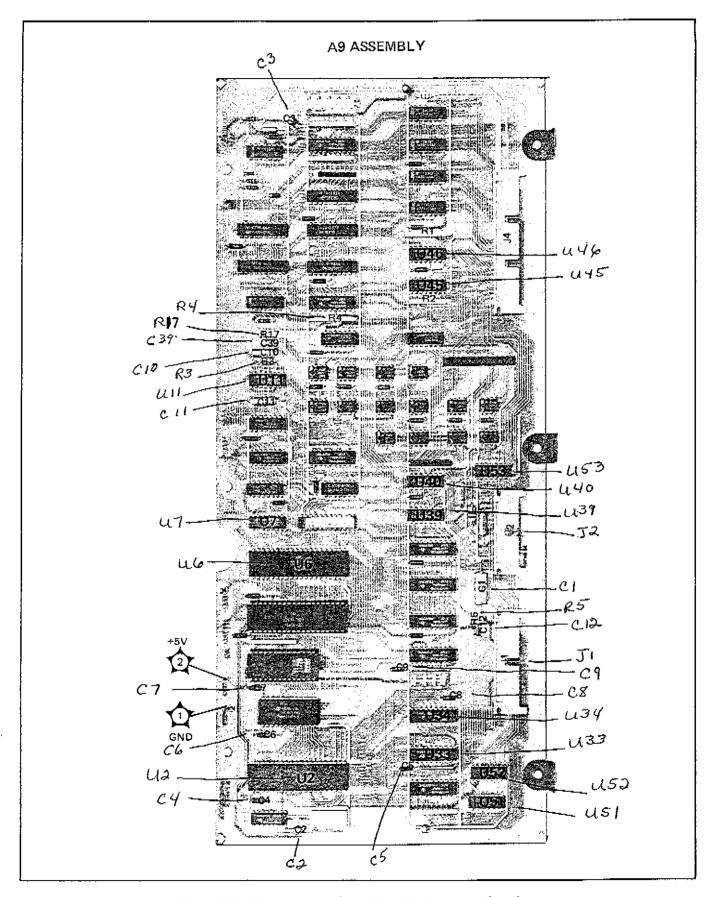
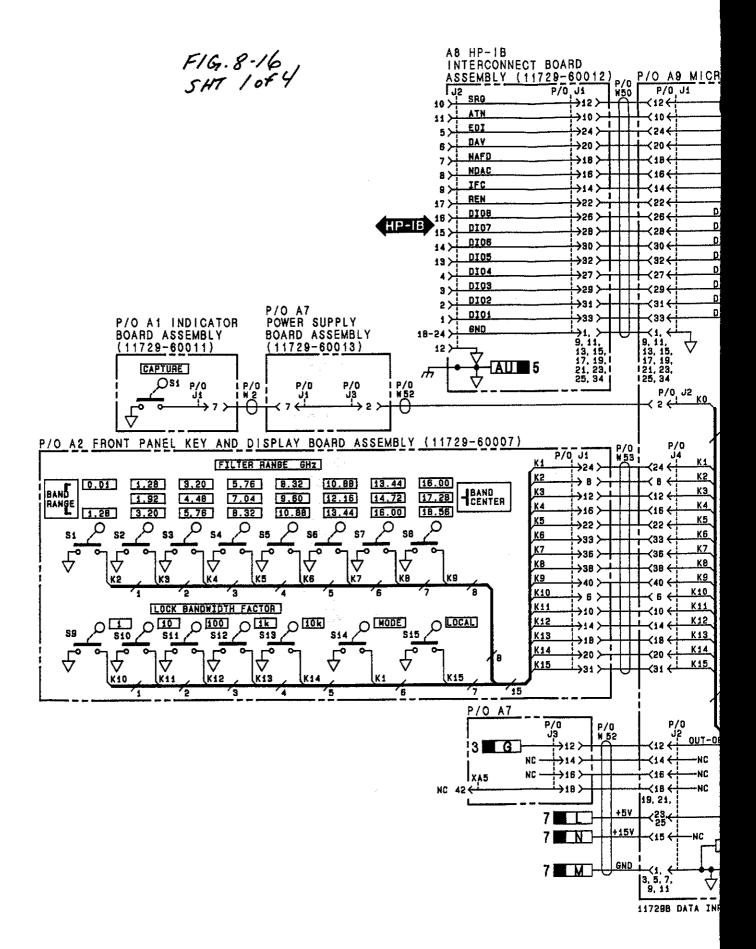



Figure 8-15. Microprocessor Board Assembly Component Locations

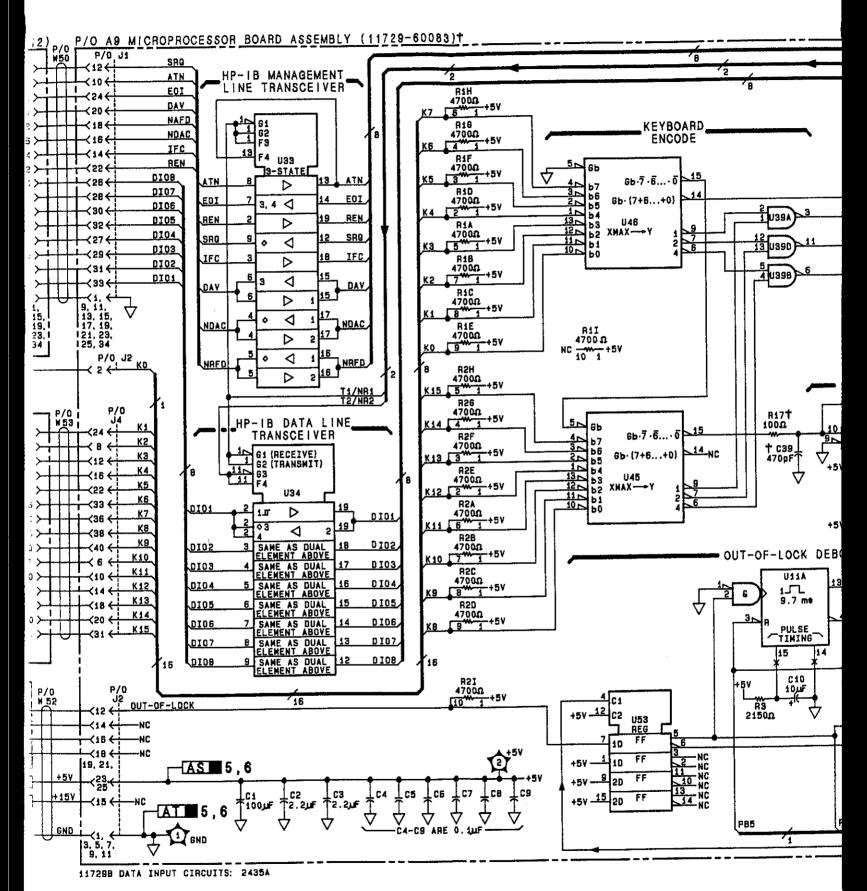
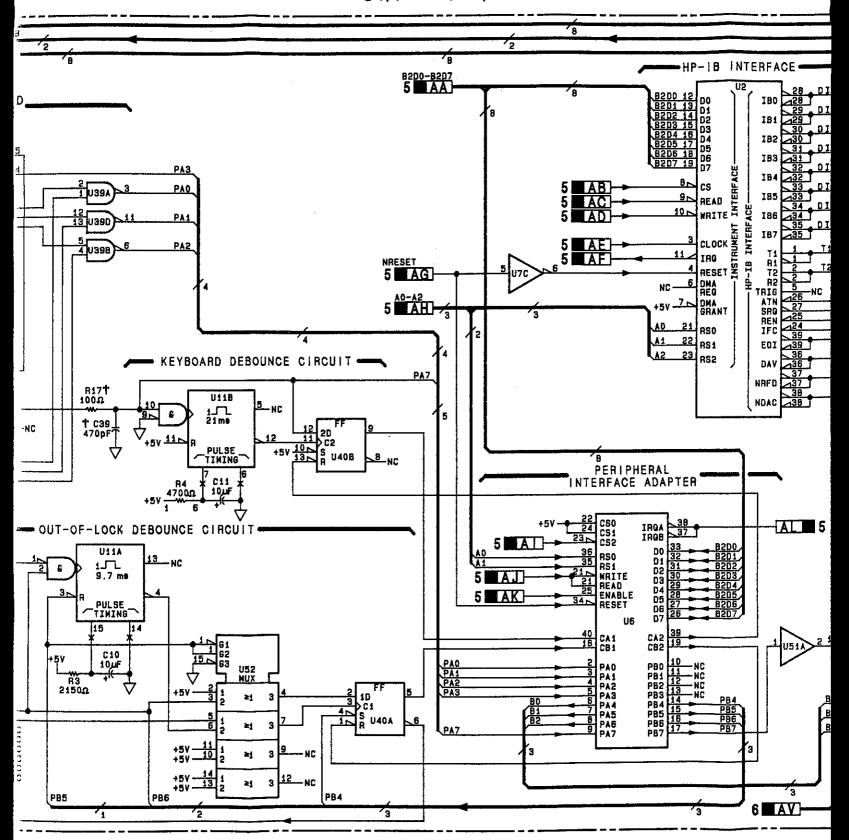



FIG. 8-16 SHT. 3 OF 4

FIG. 8-16 SHT. 4 of 4

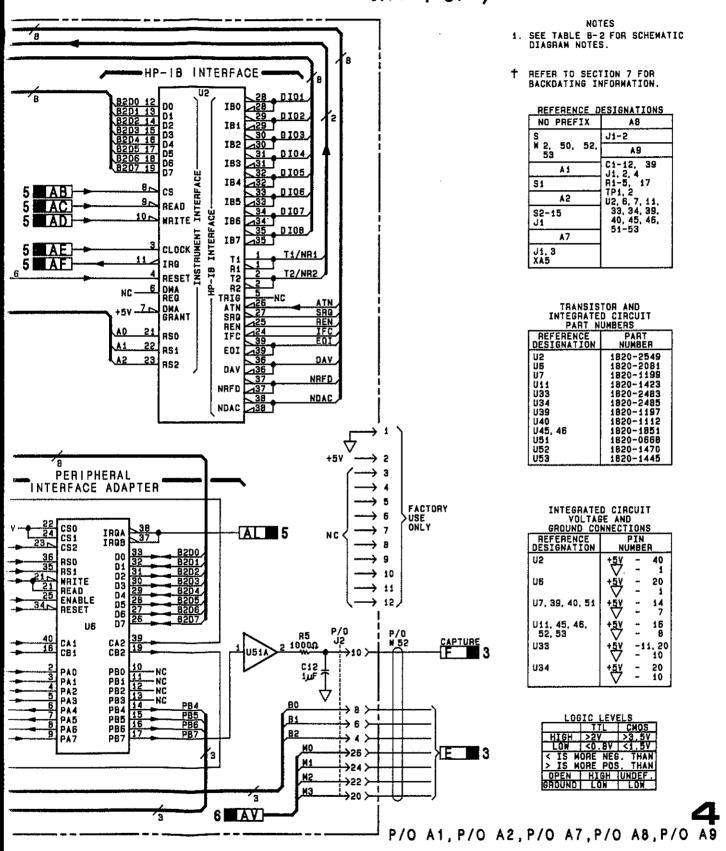


Figure 8-16. Data Input Circuit Schematic Diagram

DATA /NPUT CIRCUITS

SERVICE SHEET 5

PRINCIPLES OF OPERATION

General

The data processing circuits provide the timing, calculation, and control for the Carrier Noise Test Set. The microprocessor executes the instructions stored in ROM (Read Only Memory). Data is exchanged between the microprocessor and other circuits on the A9 Microprocessor Board Assembly via the data bus (D0-D7). Circuits are enabled to respond to the data on the data bus by control signals. These control signals are derived from the address bus by the address decoders. Data values that must be stored are placed in the RAM (that is, Random Access Memory also known as read-write memory).

Microprocessor

Microprocessor U5 controls the functions of the instrument by executing the instructions stored in ROM.

The data bus (D0 through D7) consists of eight bidirectional lines that are used to transfer 8-bit positive-true data bytes to and from the microprocessor. The microprocessor reads data from ROM AND RAM, the PIA (local) or the HP-IB interface (remote). Information on the data bus is buffered as it enters or leaves the microprocessor.

The address bus (A0 through A15) consists of sixteen unidirectional lines that transfer an address from the microprocessor to the peripheral interface adapter, HP-IB interface, ROM, RAM and the address decoders.

Interrupt request (IRQ at pin 3) and fast interrupt request (FIRQ at pin 4) are used to interrupt program execution. IRQ detects an interrupt from the HP-IB interface. FIRQ detects an interrupt from the peripheral interface adapter. Nonmaskable interrupt (NMI at pin 2), which is active low, is connected to +5V. Therefore, it is always inactive.

The halt signal (HALT at pin 40), which is active low, is connected to ± 5 V. Therefore, the microprocessor is never halted by this signal.

An external 4 MHz clock signal is connected to the microprocessor via pin 38 (EXTAL). An internal divide-by-4 circuit is used to develop the 1 MHz system clock E (pin 34). The XTAL signal line is grounded because external timing is used.

The reset signal (RESET at pin 37) is used to start the microprocessor from a power-down condition. When RESET is active (low), the microprocessor becomes inactive.

The memory ready signal input to the microprocessor (MRDY at pin 36) is connected to +5 volts to enable the 1 MHz system clock rate.

The read/write signal (pin 32) controls the direction of data transfer on the data bus. When the microprocessor is available to accept data, this signal is high, indicating that the microprocessor is in the read state. When data is being transferred out onto the data bus, this signal is low, indicating that the microprocessor is in the write state.

SERVICE SHEET 5 (cont'd) ROM and RAM

The ROM (Read Only Memory also known as read-write m Microprocessor. ROM U4 stor is used for temporary storage and data calculations.

16 MHz Clock and 16 MHz

The 16 MHz clock is the master bly. Its frequency is crystal cot to U1, a divide-by-4 circuit. I places — pin 3 (CLOCK) of the of the microprocessor.

The microprocessor has an inverts the 4 MHz to 1 MHz. The (E) and provides clocking for circuitry.

Reset Circuit

The reset circuitry signals the sequence. A reset signal, genent, initializes the microproof The instrument does a RAM

Address Decoders

U16 is a programmable array the input levels to U16 it is u circuits or test points:

> U4 ROM U38 Data Buffer U36 Data Buffer Test Point SAST2

U16 is also used to enable a further decoding of the add circuits.

Address Switch

Address switch S11 consists sets the HP-IB address of the labeled A1 through A5 set t significant bit. For the decir allowable addresses are 0-30, shipped from the factory. The instrument to listen only or t position. These switches are

HP-IB Address Buffer

U32 is a tri-state buffer. It is a to determine the setting of th

DATA INPUT CIRCUITS SHT. 2 of 7

SERVICE SHEET 5 (cont'd) ROM and RAM

The ROM (Read Only Memory) and RAM (Random Access Memoryalso known as read-write memory) provide the memory for the Microprocessor. ROM U4 stores the program information. RAM U3 is used for temporary storage of keyboard and HP-IB information, and data calculations.

16 MHz Clock and 16 MHz Clock Divider

The 16 MHz clock is the master clock for the Microprocessor Assembly. Its frequency is crystal controlled. The output of the clock is fed to U1, a divide-by-4 circuit. The 4 MHz output of U1 goes to two places — pin 3 (CLOCK) of the HP-IB interface and pin 38 (EXTAL) of the microprocessor.

The microprocessor has an internal divide-by-four circuit that converts the 4 MHz to 1 MHz. This 1 MHz signal is output on U5 pin 34 (E) and provides clocking for the Carrier Noise Test Set's digital circuitry.

Reset Circuit

The reset circuitry signals the microprocessor to begin the restart sequence. A reset signal, generated during power-up of the instrument, initializes the microprocessor from the power-down condition. The instrument does a RAM test and a ROM test at power-on.

Address Decoders

U16 is a programmable array logic integrated circuit. Depending on the input levels to U16 it is used to enable the following integrated circuits or test points:

U4 ROM	U3 RAM
U38 Data Buffer	U37 Data Buffer
U36 Data Buffer	U35 Diagnostic Switch Buffer
Test Point SAST2	Coo Diagnostic Switch Duller

U16 is also used to enable address decoders U8-U10. U8-U10 do further decoding of the address lines to enable other integrated circuits.

Address Switch

Address switch S11 consists of seven miniature slide switches. It sets the HP-IB address of the Carrier Noise Test Set. The switches labeled A1 through A5 set the address in binary. A1 is the least significant bit. For the decimal equivalent of the binary setting, allowable addresses are 0-30. The HP-IB address is set to 6 when it is shipped from the factory. The switches labeled LO and TO set the instrument to listen only or talk only, respectively, when in the "1" position. These switches are factory set to "0".

HP-IB Address Buffer

U32 is a tri-state buffer. It is read by the microprocessor at power-up to determine the setting of the address switch.

SERVICE SHEET 5 (cont'd) Diagnostic Switch and Diagnostic Sy

Diagnostic switch S2 consists of four re the operation of the instrument upon normal operation or it can be set to ru analysis diagnostics. An interpretatio defined in the table below. Settings not

	Swi	tch		
4	3	2	1	
0	0	0	0	Undefined
0	0	0	1	RAM Test
0	0	1	0	ROM Test
0	0	1	1	Signature Analysi
1	1	1	1	Normal Operation

The microprocessor reads the diagnost to determine whether or not diagnostic

TROUBLESHOOTING USING SIGN

NOTE

Run the following tests in the s

Test Equipment

Signature MultimeterHP 5005B

Address Decoding Check

Purpose. To verify the microprocesso transfer that address to the selected ch decoded at the chip.

Setup. Turn the Carrier Noise Test Set cover. Locate the A9 Microprocessor E that hold the board in place. The A9 as board laying parallel to the bottom of t

Connect the signature analyzer Timing

- 1. START/ST/SP to SAST1 (A9TP4)
- 2. STOP/QUAL to SAST1 (A9TP4)
- 3. CLOCK to SACLK (A9TP3)
- 4. GND to GND (A9TP1)

Set the signature analyzer controls as

or the ROM other

These Data mory

ig the

sed to nicro-

rface s the

that

apter,

:sed to :rface. :kable

e, it is

 $\pm 5V.$

pin 38

rom a

d.

s con-

data high, trans-

transssor is

DATA INPUT CIRCUITS 547 3 h£7

SERVICE SHEET 5 (cont'd)

Diagnostic Switch and Diagnostic Switch Buffer

emoryfor the AM U3 nation,

Diagnostic switch S2 consists of four rocker switches which define the operation of the instrument upon power-up. S2 can be set for normal operation or it can be set to run RAM, ROM, or signature analysis diagnostics. An interpretation of the switch positions is defined in the table below. Settings not shown are undefined.

Assem-
k is fed
to two
XTAL)

at conpin 34 ligital

estart nstrulition. ٦.

ngon rated

	Sw	itch					
4	3	2	1	Definition			
0	0	0	0	Undefined			
0	0	0	1	RAM Test			
0	0	1	0	ROM Test			
0	0	1	1	Signature Analysis Test			
1	1	1	1	Normal Operation			

The microprocessor reads the diagnostic switch buffer at power-up to determine whether or not diagnostics should be run.

TROUBLESHOOTING USING SIGNATURE ANALYSIS

NOTE

Run the following tests in the sequence listed.

Test Equipment

Signature MultimeterHP 5005B

Address Decoding Check

10 do grated

ies. It

itches

least

tting. en it is

et the ne "1"

Purpose. To verify the microprocessor can generate an address, transfer that address to the selected chip and the correct address is decoded at the chip.

Setup. Turn the Carrier Noise Test Set off and remove the bottom cover. Locate the A9 Microprocessor Board. Remove the 3 screws that hold the board in place. The A9 assembly is the printed circuit board laying parallel to the bottom of the instrument.

Connect the signature analyzer Timing Pod as follows:

- 1. START/ST/SP to SAST1 (A9TP4)
- 2. STOP/QUAL to SAST1 (A9TP4)
- 3. CLOCK to SACLK (A9TP3)
- 4. GND to GND (A9TP1)

er-up

Set the signature analyzer controls as follows:

SERVICE SHEET 5 (cont'd)

1. Function: Signature 2. Polarity: Clock Start..... Stop

Connect a jumper cable between NFI (A9TP1).

NOTE

The test setup conditions for t Check are the same for Servi therefore signatures may be t all three service sheets.

Connect the signature analyzer's pro Table 8-5 and verify the signatures.

Table 8-5. Signatures for Verify

Pin	U3	U4	U5	80	บาธ
1	6F9A		_	P763	0003
2	U759	_	-	1U5P	-
3	0356	6 F 9A	_ '	0356	-
4	1U5P	U759	–	_	-
5	P763	0356	_		-
6	8484	1U5P	0000		-
7	FFFF	P763		_	0002
8	שטטטן	8484	טטטט	_	9UP
9	–	FFFF	FFFF		6U28
10	_ :	טטטט	8484	_	4868
11	_	_	P763	_	4FCA
12	_	_	1U5P		_
13	_		0356	UAH6	0000
14		0000	U 759	9668	_
15	–	_	6F9A	1376	2302
16	_	<u> </u>	7791	_	546H
17	– 1	_	6321	_	96FA
18	- :	_ :	37C5	<u> </u>	_
19	87C5	-	6U28		_
20	0000	2302	4FCA	_	3838
21	0003	37C5	4868		7633
22	6321	_	9UP1	-	0000
23	7791	6U28	0002	_	A4C6
24	_	6821	_		
25	_	7791			
32	_	_	0003	-	

Turn the Carrier Noise Test Set off.

ROM Data Check

Purpose. To verify ROM operation and ROM.

SERVICE SHEET 5 (cont'd)

ę

jr.

re

is

1. Function: Signature	Normal
2. Polarity: Clock	Falling edge (2)
Start	Rising edge (1)
Stop	

Connect a jumper cable between NFREERUN (A9TP5) and GND (A9TP1).

NOTE

The test setup conditions for the Address Decoding Check are the same for Service Sheets 4,5, and 6, therefore signatures may be taken concurrently on all three service sheets.

Connect the signature analyzer's probe to the points indicated in Table 8-5 and verify the signatures.

Table 8-5. Signatures for Verifying Address Decoding

Pin	U3	U4	U5	U8	U16	U17	U18	U32	U37
1	6F9A	_		P763	0003		0000	UAH6	
2	U759	-		1U5P	_	_	P763	l —	_
3	0356	6F9A	l —	0356	_	i —	0003	l —	_
4	1U5P	U759	—	–		l —	8484	_	_
5	P763	0356	 	_				_	_
6	8484	1U5P	0000	ļ —	-	_	FFFF	_	l —
7	FFFF	P763	! —	· —	0002	l —	_	i —	
8	טטטט	8484	טטטט	_	9UP1	l —	טטטט		
9		FFFF	FFFF	_	6U28	_	_	-	_
10	_	יטטטט	8484	_	4868	 	_	i _	
11	_	_	P763		4FÇA		_	_	_
12		- ;	1U5P	_			טטטטן	_	
13	! —	_	0356	UAH6	0000	0003		_	
14	-	0000	U 759	9668	_	_	FFFF	_	_
15	_	_	6F9A	1376	2302	_	_	<u></u>	
1 6	i —	_	7791	_ ;	546H		8484	_	_
17	-	-	6821	_	96FA	_	0003	_	_
18	_	_	37C5	_'			P763	_	_
19	37C5	-	6U28	_			0000	UAH6	A4C6
20	0000	2802	4FCA	_	3838	_	_ }	_	
21	0003	37C5	4868	_	7633		_	_	_
22	6321	_ i	9UP1	_ 1	0000	_		_	_
23	7791	6U28	0002	_	A4C6	_			_
24	_	6321	_	_	_	_		_	_
25	-	7791	_		_	_	_	_	<u></u>
32	_	_	0003	_			_	_	_

Turn the Carrier Noise Test Set off.

ROM Data Check

Purpose. To verify ROM operation and the data contents stored in ROM.

SERVICE SHEET 5 (cont'd)

Connect the signature analyzer Timing P

- 1. START/ST/SP to SAST1 (A9TP4)
- 2. STOP/QUAL to A9U4 pin 20
- 3. CLOCK to SACLK (A9TP3)
- 4. GND to GND (A9TP1)

Set the signature analyzer controls as foll

- Function: Signature
 Polarity: Clock
 - Start.....StopQual.....

Leave the jumper connected between 'NF GND (A9TP1). Turn the Carrier Noise Tes

Connect the signature analyzer's probe to Table 8-6 and verify the signatures.

Table 8-6. Signatures for Verifying ROM Opera and Data Stored in ROM.

		1	· , · . · · ·		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	Pin	U4	U5	U36	
	2	P254	_	726U	
	8	FF4F		5A48	
	4	4PCC		7HUP	7
	5	A7A2	—	AC41	4
	6	108P		8C84	
	7	5342	 	8C22	
	8	1100	052A	42PU	4
ĺ	9	0108	0108	1H6H	1
	10	052A	1100	_	
	11	726U	5342		1
	12	5A48	108P	_	4
	13	7HUP	A7A2	_	
Ì	14	–	4PCC	ļ <u> </u>	8
Ì	15	AC41	FF4F	_	A
İ	16	8C84	5HC4		7.
	17	8C22	0P0P	_	5
Ì	18	42PU	0F62	_	7
ı	19	1H6H	Н6АА	_	ĺ
I	20	–	P254	_	
l	21	0F62	_	_	1
I	23	H6AA		_	
l	24	OPOP	_	_	
l	25	5HC4		THE	

Turn the Carrier Noise Test Set off. Disconn the jumper.

DATA INPUT P/O A1, P/O A2, P/O A7, P/O SERV

DATA INPUT CIRCUITS SHT. 5 of 7

SERVICE SHEET 5 (cont'd)

ormal Connect the signature

Connect the signature analyzer Timing Pod as follows:

- 1. START/ST/SP to SAST1 (A9TP4)
- 2. STOP/QUAL to A9U4 pin 20
- 3. CLOCK to SACLK (A9TP3)
- 4. GND to GND (A9TP1)

Set the signature analyzer controls as follows:

1. Function: Signature	QUAL
2. Polarity: Clock	Falling edge (2)
Start	
Stop	Rising edge (1)
Qual	

ted in

U37

4C6

ed in

dge(1)

.ge (1)

: GND

Leave the jumper connected between 'NFREERUN' (A9TP5) and GND (A9TP1). Turn the Carrier Noise Test Set on.

Connect the signature analyzer's probe to the points indicated in Table 8-6 and verify the signatures.

Table 8-6. Signatures for Verifying ROM Operation and Data Stored in ROM.

Pin	U4	U5	U36	U37
2	P254	_	726U	726Ü
3	FF4F		5A48	5A48
4	4PCC	<u> </u>	7HUP	7HUP
5	A7A2	_	AC41	AC41
6	108P	<u> </u>	8C84	8C84
7	5342	<u> </u>	8C22	8C22
8	1100	052A	42PU	42PU
9	0108	0108	1H6H	1H6H
10	052A	1100	_	–
11	726U	5342	<u></u>	1H6H
12	5A48	108P	_	42PU
13	7HUP	A7A2	-	8C22
14	–	4PCC	-	8C84
15	AC41	FF4F	_	AC41
16	8C84	5HC4		7HUP
17	8C22	0P0P	_	5A48
18	42PU	0F62	-	726U
19	1 H6H	H6AA	_	_
20	- .	P254	– ,	_
21	0F62		_	_
23	H6AA	_	_	_
24	OPOP	_	_	_
25	5HC4	_	<u> </u>	_

Turn the Carrier Noise Test Set off. Disconnect the Timing Pod and the jumper.

4

DATA INPUT CIRCUITS P/O A1, P/O A2, P/O A7, P/O A8, P/O A9 SERVICE SHEET Service

SERVICE SHEET 5 (cont'd) ROM Operation Check

Purpose. Verify that the microp the data stored in ROM and code.

Setup. Set the diagnostic switch of A9 assembly) to the ROM to below.

Diagnostic Switch S2	ROI
1	
2	
3	İ
4	

Locate the 8 Red LEDs between individual LEDs are numbered being the LED closest to the hin microprocessor board assembly

Turn the Carrier Noise Test Sinstrument.

Check the pattern of the flashis ROM passes the test.

ROM Passes Test — D5 remain other LEDs flash on and off. This address and data busses between icroprocessor are working.

ROM Fails Test — D5 remains or LEDs remain off. This signifies and data busses have a problem circuits.

Turn the Carrier Noise Test Set

RAM Operation Check

Purpose. To verify that the RAM

Setup. Set the diagnostic switch test position shown below.

Diagnostic Switch S2	RAM
1	
2	
3	
4	

Turn the Carrier Noise Test Se instrument.

DATA INPUT CIRCUITS

SERVICE SHEET 5 (cont'd) ROM Operation Check

Purpose. Verify that the microprocessor can read the data stored in ROM and then execute that code.

Setup. Set the diagnostic switch A9S2 (right side of A9 assembly) to the ROM test position shown below.

Diagnostic Switch S2	ROM Test Logic Level
1	0
2	1
3	. 0
4	0

Locate the 8 Red LEDs between U27 and U28. The individual LEDs are numbered D0-D7 with D7 being the LED closest to the hinged portion of the microprocessor board assembly.

Turn the Carrier Noise Test Set on to reset the instrument.

Check the pattern of the flashing LEDs to see if ROM passes the test.

ROM Passes Test — D5 remains on and all the other LEDs flash on and off. This verifies that the address and data busses between ROM and the microprocessor are working.

ROM Fails Test — D5 remains on and all the other LEDs remain off. This signifies that the address and data busses have a problem. Check for short circuits.

Turn the Carrier Noise Test Set off.

RAM Operation Check

Purpose. To verify that the RAM is operational.

Setup. Set the diagnostic switch A9S2 to the RAM test position shown below.

Biagnostic Switch S2	RAM Test Logic Level
1	1
2	0
3	0
4	0

Turn the Carrier Noise Test Set on to reset the instrument.

Check the pattern of the flashing LEDs to see if RAM passes the test.

RAM Passes Test — D4 is on and D0-D3 count, all LEDs turn on then the counting sequence repeats. This verifies that the microprocessor can access RAM properly.

RAM Fails Test — D4 is on but D0-D3 do not go through counting sequence. This shows that the RAM or the control lines to the RAM may be faulty.

Turn the Carrier Noise Test Set off.

Signature Analysis Test — Microprocessor and Data Transfer

Purpose. The Microprocessor runs a program to verify the functional operation of ROM, RAM, and the data buffers.

Connect the signature analyzer Timing Pod as follows:

- 1. START/ST/SP to SAST2 (A9TP6)
- 2. STOP/QUAL to SAST2 (A9TP6)
- 3. CLOCK to SACLK (A9TP3)
- 4. GND to GND (A9TP1)

Set the signature analyzer controls as follows:

1. Function: Signature	Normal
2. Polarity: Clock	
Start	Rising edge (1)
Stop	Falling edge (2)

Set the Diagnostic Switch A9S2 as follows:

Diagnostic Switch S2	Signature Analysis Test Logic Level
1	1
2	1
3	0
4	0

Turn the Carrier Noise Test Set on to reset the diagnostic switch.

Connect the signature analyzer's probe to the points indicated in Table 8-7 and verify the signatures.

NOTE

The test setup conditions for the Signature Analysis Test are the same for Service Sheets 4, 5 and 6, therefore signatures may be taken concurrently on all three service sheets.

SERVICE SHEET 5 (cont'd)

Table 8-7. Signatures for Verifying Microprocessor, ROM, RAM and Data Buffer Operation

Pin	N3	U4	U5	U7	U8	U16	U17	U18	U36	U37
1	F5AH	_			56CC	UHU1		0000	UHU1	UHU1
2	6C04	U9U8	_	_	F351	_	_	56CC	1CP1	P8CF
3	034P	F5AH	_	_	034P	_	_	UHU1	0UP9	4771
4	F351	6C04		_	3A56	_	_	H083	6800	AF7U
5	56CC	034P		_	_	1HCU	_	_	F109	6U22
6	H083	F351	0000			1HCU	_	675A	43P0	068C
7	675A	56CC	_	_	_	F69F	_	_	775 H	P66C
8	Ų46P	H083	U46P	_	_	4732	P04P	U46P	CA95	866F
9	P8CF	675A	675A	_	_	7989			U8H3	F3F8
10	4771	U46P	H083	_	_	4A99	UHU1	—	_	_
11	AF7U	P8CF	56CC	_	_	U9U8	UHU1	_	U8H3	U8H3
12	_	4771	F351	P04P	_	_	_	Ŭ46 P	ÇA95	CA95
13	6U22	AF7U	034P	UHU1	1HÇU	0000	1HCU	_	775H	775H
14	068C	_	6C04	_	3361	_	_	675A	43P0	43P0
15	P66C	6U22	F5AH	_	6978	2PC1	_	_	F109	F109
16	866F	068C	PUFP			1HCU	_	H083	6800	6800
17	F3F8	P66C	U713	_	_	1HCU		UHU1	0UP9	0UP9
18	4C46	866F	411F	_	–	_	–	56CC	1CP1	1CP1
19	411F	F3F8	7989	_	_			0000	_	
20	P04P	2PC1	U9U8	***		4C46	_	_		_
21	UHU1	_	4A99	_	<u> </u>	3A56	<u> </u>	_	_	
22	U713	_	4732			1HCU	_	_		_
23	PUFP	_	F69F	_		FP0F	_	_	_	–
24	_	_	U8H3	_	_	_	<u> </u>	_	<u> </u>	
25	_	—	CA95	_	_	_		_	_	
26	_	_	7 7 5 H	_	_	_	_		–	
27	–	–	43P0	_	_	—	–	*****	 -	
28	-		F109	_		_	-	_		_
29	-	–	6800	_	_	_	–	—		-
30	-	–	0UP9	-	_	–	_	-	_	
31	–	–	1CP1	_	_	_	_	· –		- '
32	<u> </u>	ļ —	UHU1	_	_	_		_	_	_
]								

Turn the Carrier Noise Test Set off and disconnect the Timing Pod.

Reset the Diagnostic Switch A9S2 to the Normal Operation position shown below:

Diagnostic Switch S2	Normal Operation Logic Level
1	1
2	1
3	1
4	1

Service

A12 ASSEMBLY

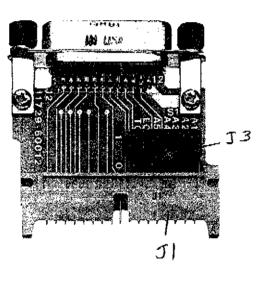


Figure 8-17. HP-IB Interconnect Board Assembly Component Locations

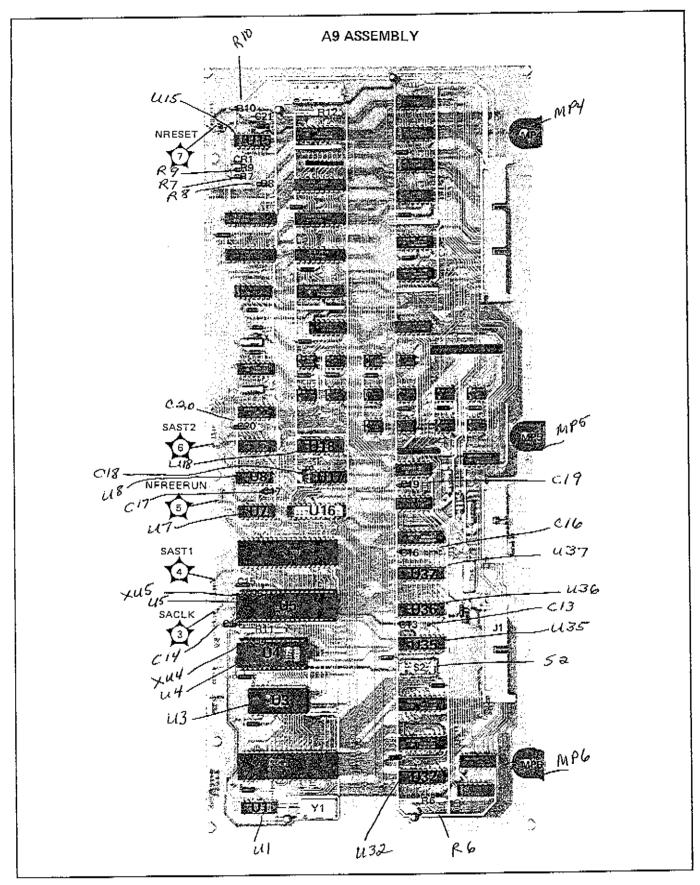
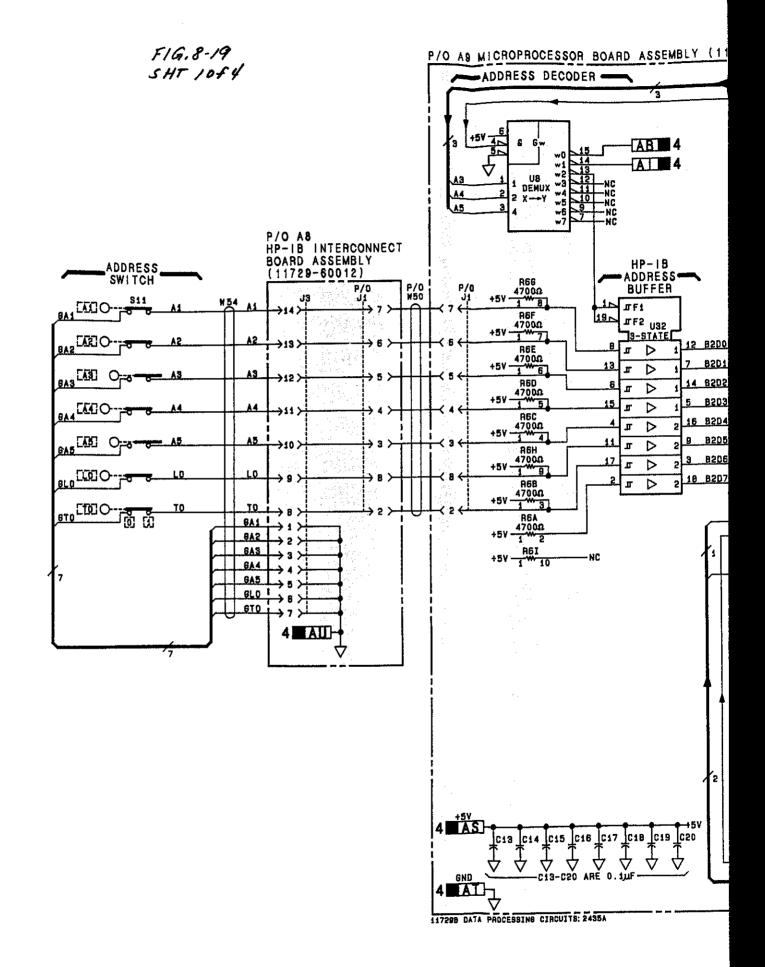
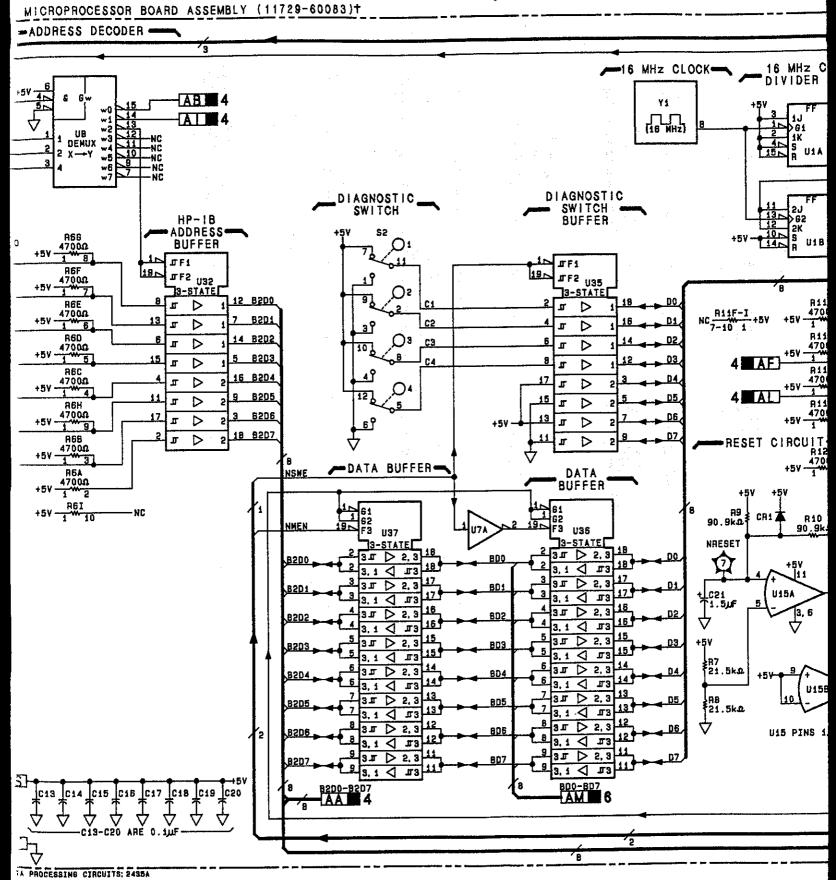
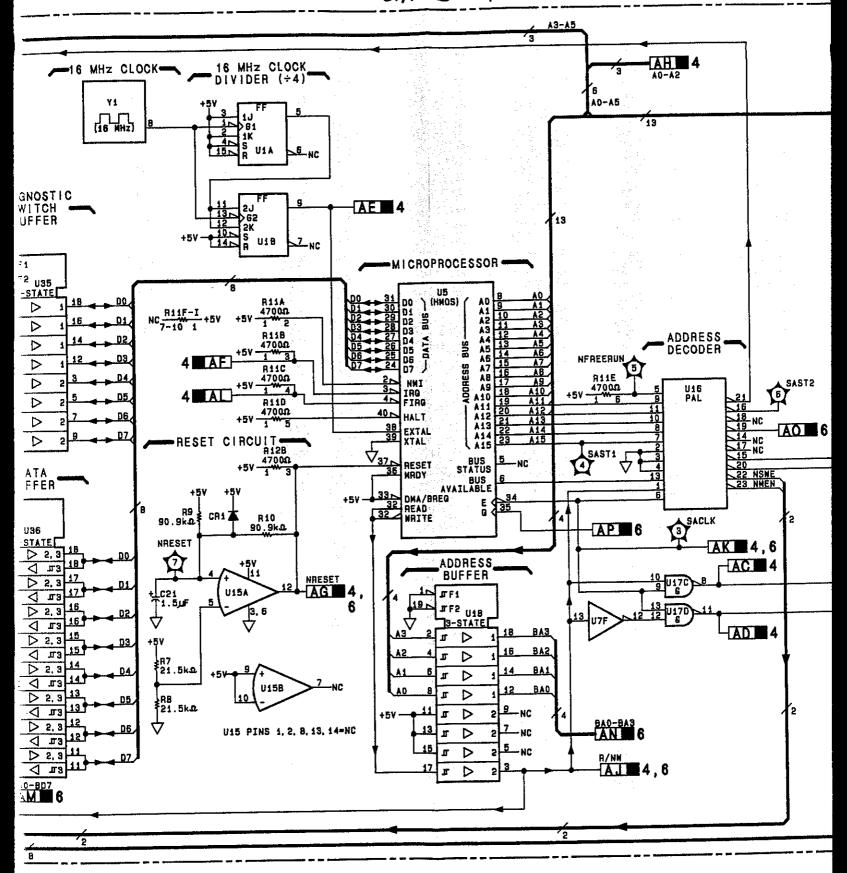
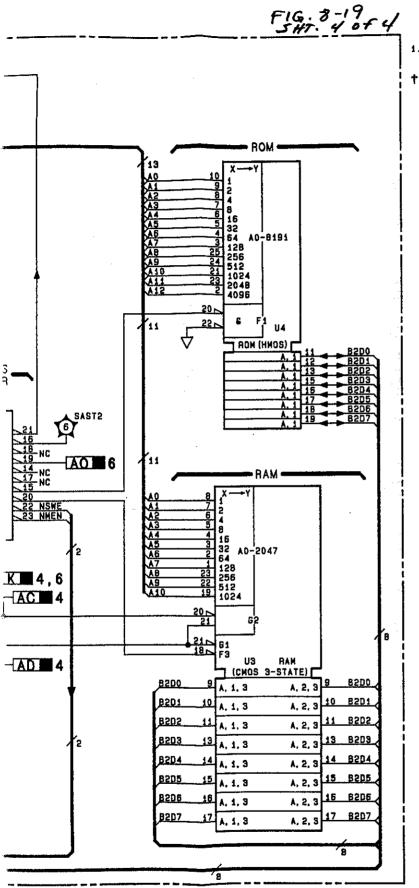






Figure 8-18. Microprocessor Board Assembly Component Locations

	MUIES	
1.	TO TABLE 8-2 FOR	;

T REFER TO SECTION 7 FOR BACKDATING INFORMATION.

REFERENCE D	ESIGNATIONS
NO PREFIX	PA P
S #50,54	C13-21 CR1
88] J1 85-12
J1, 3	S2 TP3-7 U1, 3-5, 7, 8, 15-18, 32, 35-37 Y1

THANSISTOR AND INTEGRATED CIRCUIT PART NUMBERS		
REFERENCE DESIGNATION	PART NUMBER	
U1 U3 U4 U5 U7 U8 U15 U16 U17 U18, 32, 35 U36, 37	1820-1212 1818-1768 11729-80003 1820-2624 1820-1199 1820-1216 1826-0175 11729-80002 1820-1197 1820-2024	

INTEGRATED CIRCUIT VOLTAGE AND GROUND CONNECTIONS				
REFERENCE DESIGNATION	PIN NUMBER			
U1, 8	+5V - 16			
U3, 16	+5v - 24			
U4	+5V - 1, 25-			
	▽ - 14			
บร	+5V - 7 - 1			
U7, 17	+5¥ - 14			
U1B, 32, 35- 37	+5v - 20			
Y1	+5♥ - 14			
	NC - 1			

L06	IC LEVE	LS
	TTL	CMOS_
HIGH	>54	>3.50
LOW	<0.BV	<1.5V
< IS M	ORE NEG	THAN
> IS M	DAE POS	THAN
OPEN	HIGH	UNDEF.
GROUND	LOW	LOW

Figure 8-19. Data Processing Circuits Schematic Diagram

DATA PROCESSING CIRCUITS SHT 1 of 7

SERVICE SHEET 6

PRINCIPLES OF OPERATION

General

The switch and LED control circuits perform the following functions:

- a. decode addresses of latches,
- b. load data from data bus into latches, and
- c. drive front panel LEDs.

Address Decoders

Address decoders U9 and U10 decode the LED driver latches.

Switch Driver Enable Latch

The switch driver enable latches prevent several relays from changing simultaneously at power-on. The $\pm 24 V$ supply is designed to switch only a few relays at once.

At power-up, the switch driver enable latches U13 and U14 are set to 0, thus disabling the switch relay drivers. Even though the switch relay driver latches can power-up in random condition, the switch relay drivers are forced off because of these secondary latches. The microprocessor then sets the switch relay driver latches to some orderly condition. After that is done, the microprocessor enables the switch relay drivers one at a time. Once all the relay drivers are turned on, the enable latches are left alone. They are left in a state so that the relay drivers can respond to the other control lines.

Switch Relay Driver Latches

Latches U25 and U26 store data for the relays. These latches turn on and off in response to inputs from front panel keys or HP-IB.

Switch Relay Drivers

These drivers generate the current sinks to activate the relays in the microwave switches (see Service Sheet 1).

Diagnostic LED Latch

U27 drives DS1 and DS2. The individual LEDs within DS1 and DS2 are numbered D0-D7. D7 is closest to the hinged portion of the Microprocessor Board Assembly. The LEDs that correspond to the four most significant bits (D4-D7) indicate the setting of the diagnostic switch. Refer to Principles of Operation on Service Sheet 5 for an explanation of the diagnostic switch. An interpretation of the LEDs is shown in the following table.

Diagnostic	Normal Indication
RAM Test	D4 is on and D0-D3 count, then all the LEDs turn on and the sequence repeats.
ROM Test	D5 is on and all others flash.
Signature Analysis	D4 and D5 are on and all others are dim.
Self Test (power-up)	ROM-D5 is on then all others turn on. RAM-D4 is on then all others turn on. Option switch-D7 is on and the setting of the Option switch is shown in binary.

SERVICE SHEET 6

Multiplex Switch D

These circuits are n instrument.

Option Switch

The option switch is of the options that are (in binary) the numb switch indicates who system can handle up other than 1 through switch is set to band that can be installed i tion of the instrument option switch must number of bands. Yo HP-IB) as many band the switch is set for 6 will never get the sev Adjustment in Section Switch settings.

LED Driver/Latches

These latches drive th play Board assembly.

TROUBLESHOOTIN

Run the follow

Test Equipment

Signature Multimeter

Address Decoding Ci

Purpose. To verify the transfer that address to decoded at the chip.

Setup. Turn the Carrie cover. Locate the A9 M that hold the board in p board laying parallel to

Connect the signature a

- 1. START/ST/SP to SA
- 2. STOP/QUAL to SAS

DATA PROCESSING CIRCUITS SHI 2 8 7

SERVICE SHEET 6 (cont'd)

Multiplex Switch Drivers and Multiplex Sense Detect Circuit

These circuits are not used in the current configuration of the instrument.

Option Switch

n-

ė.

18

in

of

Эľ

ıе

Ŀе

T)

n

ze

∌d .y.

١ę

. 5

vn

The option switch is set at the factory to inform the microprocessor of the options that are in the instrument. Switches 1 through 4 define (in binary) the number of bands that are in the system. The fifth switch indicates whether or not the AM option is installed. The system can handle up to 11 bands. If the switch is set to any number other than 1 through 11 (decimal), the microprocessor assumes the switch is set to band 1. Eight (8) bands are the maximum number that can be installed in the Carrier Noise Test Set. If the configuration of the instrument is ever changed to add or delete a filter, the option switch must be changed so that it shows the maximum number of bands. You can only call up (from the front panel or HP-IB) as many bands as the switch is set to allow. For example, if the switch is set for 6 bands and you really have seven bands, you will never get the seventh band. Refer to the Filter Option Switch Adjustment in Section V for a complete description of the Option Switch settings.

LED Driver/Latches

These latches drive the LEDs on the A2 Front Panel Key and Display Board assembly.

TROUBLESHOOTING USING SIGNATURE ANALYSIS

NOTE

Run the following test in the sequence listed.

Test Equipment

Address Decoding Check (using a falling edge clock trigger)

Purpose. To verify the microprocessor can generate an address transfer that address to the selected chip and the correct address is decoded at the chip.

Setup. Turn the Carrier Noise Test Set off and remove the bottom cover. Locate the A9 Microprocessor Board. Remove the 3 screws that hold the board in place. The A9 assembly is the printed circuit board laying parallel to the bottom of the instrument.

Connect the signature analyzer Timing Pod as follows:

- 1. START/ST/SP to SAST1 (A9TP4)
- 2. STOP/QUAL to SAST1 (A9TP4)

SERVICE SHEET 6 (cont'd)

- 3. CLOCK to SACLK (A9TP3)
- 4. GND to GND (A9TP1)

Set the signature analyzer controls as fo

Connect a jumper cable between NFRE (A9TP1).

Connect the signature analyzer's probe Table 8-8 and verify the signatures.

NOTE

The test setup conditions for the Check are the same for Service therefore signatures may be tak all three service sheets.

Table 8-8. Signatures Verlfying Add a Falling Edge Clock T

Pin	U9	U10	U13	U14	t
1	טטטט	טטטט	_	—	0
2	FFFF	FFFF	_		
3	8484	8484	_	_	
4	CFHU			_	
5	P763	0003	_	–	
10	AC67	0003	_	—	
11	AH92	0003	0003	0003	
12	C645	0003	_	–	
13		0003	_	-	
14	6464	0003	-		
15	919F	0003			<u>. </u>

Address Decoding Check Using a Ris

Purpose. To verify the address decoding early memory cycle before the data is tr

Setup. Change the controls on the signa

Polarity: Clock

Connect the signature analyzer's probe Table 8-9 and verify the signatures.

Turn the Carrier Noise Test Set off. Disc the jumper.

DATA PROCESSING CIRCUITS SHT 3 of 7

SERVICE SHEET 6 (cont'd)

3. CLOCK to SACLK (A9TP3)

4. GND to GND (A9TP1)

Set the signature analyzer controls as follows:

1. Function: Signature	Normal
2. Polarity: Clock	Falling edge (2)
Start	
Stop	Rising edge (1)

Connect a jumper cable between NFREERUN (A9TP5) and GND (A9TP1).

Connect the signature analyzer's probe to the points indicated in Table 8-8 and verify the signatures.

NOTE

The test setup conditions for the Address Decoding Check are the same for Service Sheets 4, 5 and 6, therefore signatures may be taken concurrently on all three service sheets.

Table 8-8. Signatures Verifying Address Decoding Using a Falling Edge Clock Trigger

Pin	U9	U10	U13	U14	U47	U48	U49	U50
1	טטטט	עטטט	_	_	0003	0003	0003	0003
2	FFFF	FFFF	_	_		_		_
3	8484	8484				_		_
4	CFHU	_	_	—	—			_
5	P763	0008		-	<u> </u>	—	_	_
10	AC67	0003	_	—		-	_	—
11	AH92	0003	0003	0003	–		<u> </u>	
12	C645	0003		-			—	
13	-	0003	—			-	-	-
14	6464	0003	_	-	—			
15	919F	0003	_	<u> </u>		<u> </u>	<u> </u>	

Address Decoding Check Using a Rising Edge Clock Trigger

Purpose. To verify the address decoding of those chips that have an early memory cycle before the data is transfered.

Setup. Change the controls on the signature analyzer as follows:

Polarity: Clock Rising Edge (1)

Connect the signature analyzer's probe to the points indicated in Table 8-9 and verify the signatures.

Turn the Carrier Noise Test Set off. Disconnect the Timing Pod and the jumper.

SERVICE SHEET 6 (cont'd)

Table 8-9. Signatures Verif Decoding Using A Rising Edge

Pin	U10	U47	U48
1	טטטט	Н3Н9	U6AP
2	समस्य	_	<u> </u>
3	8484		—
5	0000	_	—
10	9H3P	-	<i>-</i> -
11	74Ų5	–	
12	H3H9		i
13	4U69	-	
14	3HA8		<u>-</u> -
15	U6AP	_	

ROM Operation Check

Purpose. Verify that the microprocessor ROM and then execute that code.

Setup. Set the diagnostic switch A9S2 (the ROM test position shown below.

Diagnostic Switch S2	ROM Test
1	
2	
3	
4	

Locate the 8 Red LEDs between U27 an are numbered D0-D7 with D7 being th portion of the microprocessor board as

Turn the Carrier Noise Test Set on to r

Check the pattern of the flashing LEDs

ROM Passes Test — D5 remains on and and off. This verifies that the addres ROM and the microprocessor are work

ROM Fails Test — D5 remains on and a This signifies that the address and d Check for short circuits.

Turn the Carrier Noise Test Set off.

RAM Operation Check

Purpose. To verify that the RAM is op

Setup. Set the diagnostic switch A9S shown on the next panel.

Dis-

îŧ

the

essor

efine fifth The nber

- the

nber

urathe

aum

el or

le, if

you

itch

tion

er) iress ess is

ttom rews rcuit

SERVICE SHEET 6 (cont'd)

Table 8-9. Signatures Verifying Address Decoding Using A Rising Edge Clock Trigger

Pin	บาง	U47	U48	U49	U50
1	טטטט	Н3Н9	U6AP	4U69	3HA8
2	FFFF	_	i —		_
3	8484	-		–	****
5	0000	_			_
10	9H3P		_	<u> </u>	_
11	74U5	_		—	—
12	нзн9	_	_	_	<u> </u>
13	4U69	_		l —	
14	3HA8	_	_		
15	U6AP		l —	_	l —

ROM Operation Check

Purpose. Verify that the microprocessor can read the data stored in ROM and then execute that code.

Setup. Set the diagnostic switch A9S2 (right side of A9 assembly) to the ROM test position shown below.

Diagnostic Switch S2	ROM Test Logic Level
1	0
2	1
3	0
4	0

Locate the 8 Red LEDs between U27 and U28. The individual LEDs are numbered D0-D7 with D7 being the LED closest to the hinged portion of the microprocessor board assembly.

Turn the Carrier Noise Test Set on to reset the instrument.

Check the pattern of the flashing LEDs to see if ROM passes the test.

ROM Passes Test — D5 remains on and all the other LEDs flash on and off. This verifies that the address and data busses between ROM and the microprocessor are working.

ROM Fails Test — D5 remains on and all the other LEDs remain off. This signifies that the address and data busses have a problem. Check for short circuits.

Turn the Carrier Noise Test Set off.

RAM Operation Check

Purpose. To verify that the RAM is operational.

Setup. Set the diagnostic switch A9S2 to the RAM test position shown on the next panel.

SERVICE SHEET 6 (cont'd)

Diagnostic Switch S2	RAM Test Logic Leve	
1	1	
2	0	
3	0	
4	0	

Turn the Carrier Noise Test Set on to reset the i

Check the pattern of the flashing LEDs to see if F

RAM Passes Test — D4 is on and D0-D3 count, al the counting sequence repeats. This verifies that can access RAM properly.

RAM Fails Test — D4 is on but D0-D3 do not g sequence. This shows that the RAM or the conta may be faulty.

Turn the Carrier Noise Test Set off.

Signature Analysis Test — Microprocessor a

Purpose. The Microprocessor runs a program to sion of data from the Microprocessor to the outp tion of the relay circuitry is tested.

Connect the signature analyzer Timing Pod as

- 1. START/ST/SP to SAST2 (A9TP6)
- 2. STOP/QUAL to SAST2 (A9TP6)
- 3. CLOCK to SACLK (A9TP3)
- 4. GND to GND (A9TP1)

Set the signature analyzer controls as follows:

Set the Diagnostic Switch A9S2 as follows:

Diagnostic Switch S2	Signature Analy
1	
2	
3	
4	

Turn the Carrier Noise Test Set on to reset the

Signatures Verliying Address ing A Rising Edge Clock Trigger

U47	U48	U49	U50
Н3Н9	U6AP	4U69	3HA8
· —	_	_	–
<u> </u>	–	<u> </u>	–
! <u></u>			_
<u></u>	_	_	—
	_	_	ļ
_	_	_	
	<u> </u>	–	–
_		-	
_		_	

microprocessor can read the data stored in nat code.

switch A9S2 (right side of A9 assembly) to own below.

S2	ROM Test Logic Level
	0
	1
	0
	0

etween U27 and U28. The individual LEDs h D7 being the LED closest to the hinged essor board assembly.

est Set on to reset the instrument.

ashing LEDs to see if ROM passes the test.

emains on and all the other LEDs flash on at the address and data busses between essor are working.

nains on and all the other LEDs remain off.
ddress and data busses have a problem.

est Set off.

he RAM is operational.

c switch A9S2 to the RAM test position

DATA PROCESSING CIRCUITS SHT 5 OF 7

SERVICE SHEET 6 (cont'd)

Diagnostic Switch S2	RAM Test Logic Level	
1	1	
2	0	
3	0	
4	0	

Turn the Carrier Noise Test Set on to reset the instrument.

Check the pattern of the flashing LEDs to see if RAM passes the test.

RAM Passes Test — D4 is on and D0-D3 count, all LEDs turn on then the counting sequence repeats. This verifies that the microprocessor can access RAM properly.

RAM Fails Test — D4 is on but D0-D3 do not go through counting sequence. This shows that the RAM or the control lines to the RAM may be faulty.

Turn the Carrier Noise Test Set off.

Signature Analysis Test — Microprocessor and Relay Circuitry

Purpose. The Microprocessor runs a program to verify the transmission of data from the Microprocessor to the output ports. The operation of the relay circuitry is tested.

Connect the signature analyzer Timing Pod as follows:

- 1. START/ST/SP to SAST2 (A9TP6)
- 2. STOP/QUAL to SAST2 (A9TP6)
- 3. CLOCK to SACLK (A9TP3)
- 4. GND to GND (A9TP1)

Set the signature analyzer controls as follows:

1.	Function: Signature	Normal
2.	Polarity: Clock	Falling edge (2)
	Start	Rising edge (1)
	Stop	Falling edge (2)

Set the Diagnostic Switch A9S2 as follows:

Biagnostic Switch S2	Signature Analysis Test Logic Level
1	1
2	1
3	0
4	0

Turn the Carrier Noise Test Set on to reset the diagnostic switch.

SERVICE SHEET 6 (cont'd)

Connect the signature analyzer's probe to the points indicated in Table 8-10 and verify the signatures.

NOTE

The test setup conditions for the Signature Analysis Test are the same for Service Sheets 4,5, and 6, therefore signatures may be taken concurrently on all three service sheets.

Table 8-10. Signatures Verifying Microprocessor and Relay Circuitry Operation (1 of 3)

Pin	U9	U13	U14	U19	U20	U21	U22	U23
1	U46P	_	_	2F86	HP61	H10U	4H18	H10U
2	675A	90CF	8P37	_		_	_	FFCO
3	H083	9130	9130	_	—	–		2F86
4	U585	7097	7097	_	_		–	3139
5	56CC	HU34	3964	_	_	–	_	28HI
6	<u> </u>	581C	1758	3139	A55P	FFC0	F5H3	356P
7	_	8A90	8 A 90	_	-			
8	_	HPCP	HPCP	_	_	_	–	C074
9	_	F471	F76F		<u> </u>	–	_	AHFC
10	1HCU	<u> </u>	_	_	-	_	l –	3HF8
11	H344	<u> </u>	_		<u> </u>	— .	–	2077
12	1HCU	FFC2	6C97	_	_	_		F206
13	_	HUH9	HUH9	—		<u> </u>	l –	HUC9
14	79C0	586A	586A	_	–	_		_
15	3819	P92F	C0C7	_	*****	_	–	_
16	! —	2183	P409		_	–		_
17	_	PPF7	PPF7	_	_	-	_	
18		1P1U	1P1U	_	_		_	
19	_	1953	3C32		_	—	l –	_

SERVICE SHEET 6 (cont'd)

Table 8-10. Signatures Verifying Microprocessor and Relay Circuitry Operation (2 of 3)

Pin	U25	U26	U27	U29	U30	U31	U38	U41
1	H344	3819	79C0	28H1	HUC9	2077	UHU1	AHFC
2	UF5F	673F	_	_	_		9130	
3	9130	9130	9130	_	-	_	7097	–
4	8A90	8A90	8A90	<u> </u>	_	_	8A90	-
5	F4U9	28H1	_	_	_		HPCP	
6	HP61	2F86	_	356P	F206	3HF8	HUH9	C074
7	HUH9	HUH9	HUH9	<u> </u>	_	_	58 6A	<u> </u>
8	PPF7	PPF7	PPF7	_	<u> </u>	_	PPF7	_
9	4H18	H10U	_	_	_	–	1P1U	–
11	l <u> </u>		_	_	—	<u> </u>	U8H3	-
12	F5H3	8494		_	_		CA95	
13	1P1U	1P1U	1P1U	_		-	775H	_
14	586A	586A	586A		_	_	43P0	-
15	A55P	HUC9	_	_		_	F109	_
16	09AA	2077	_	_	_	_	6800	–
17	HPCP	HPCP	HPCP	_	_	_	OUP9	
18	7097	7097	7097	_	_	_	1CP1	_
19	5C41	AHFC		l <u> </u>			U585	

Table 8-10. Signatures Verlfying Microprocessor and Relay Circuitry Operation (3 of 3)

Pln	U42	U 43	U44	U47	U48	U49	U50	U54	U55	U56	U57
-	TIDET	0404			, <u> </u>			09AA	F4U9	673F	5C41
1	UF5F	8494	-	_			~	UDAAA	1403	Oron	0041
2	-	_		9130	9130	9130	9130	_			_
3		_	09AA	—	<u> </u>	_	_	_	! — !	_	
4	-	_	1415	7097	7097	7097	7097	_			_
5	_		F4U9	—	–	_	_		_	_	_
6	P1P3	992C	H946	8A90	8A90	8A90	8 A 90	1415	H946	7 A 83	46UP
8	_	_	46UP	–	_		_	-		_	<u> </u>
10	 	_	7A83	HPCP	HPCP	HPCP	HPCP		_	_	
11		_	673F	 	_		_	_	_		—
12		_	992C	HUH9	HUH9	HUH9	HUH9	_		_	
13	-		8494	-	l —	–	—	-	-	_	_
14	-	_	<u> </u>	586A	586A	586A	586A	–	1 —	_	

Turn the Carrier Noise Test Set off. Disconnect the Timing Pod.

Reset the Diagnostic Switch S2 to the normal operation position shown as follows:

Diagnostic Switch S2	Normal Operation Logic Level
1	1
2	1
3	1
4	1

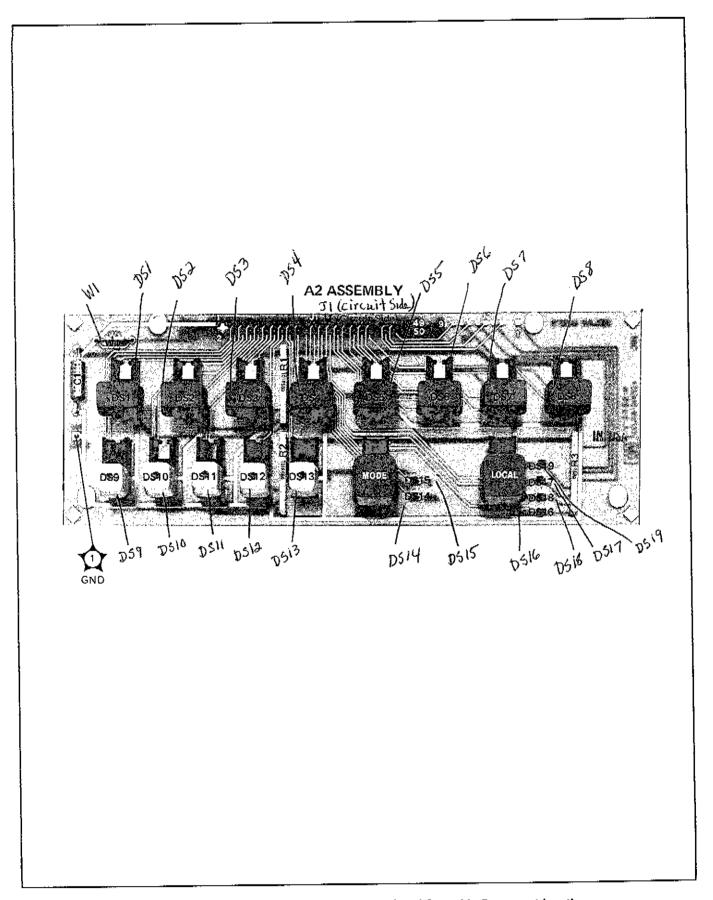


Figure 8-20. Front Panel Key and Display Board Assembly Component Locations

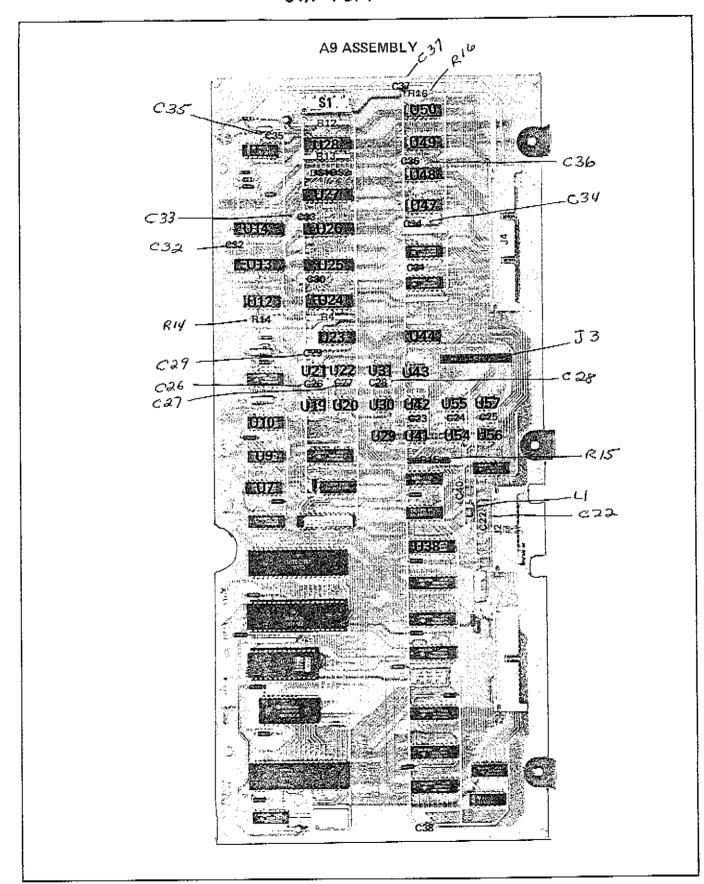
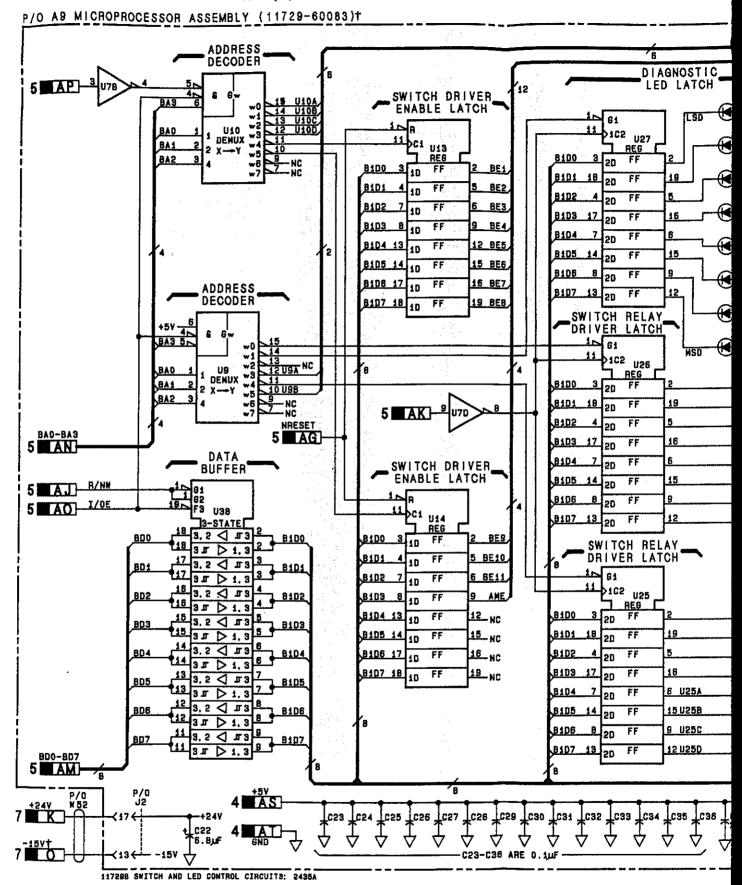
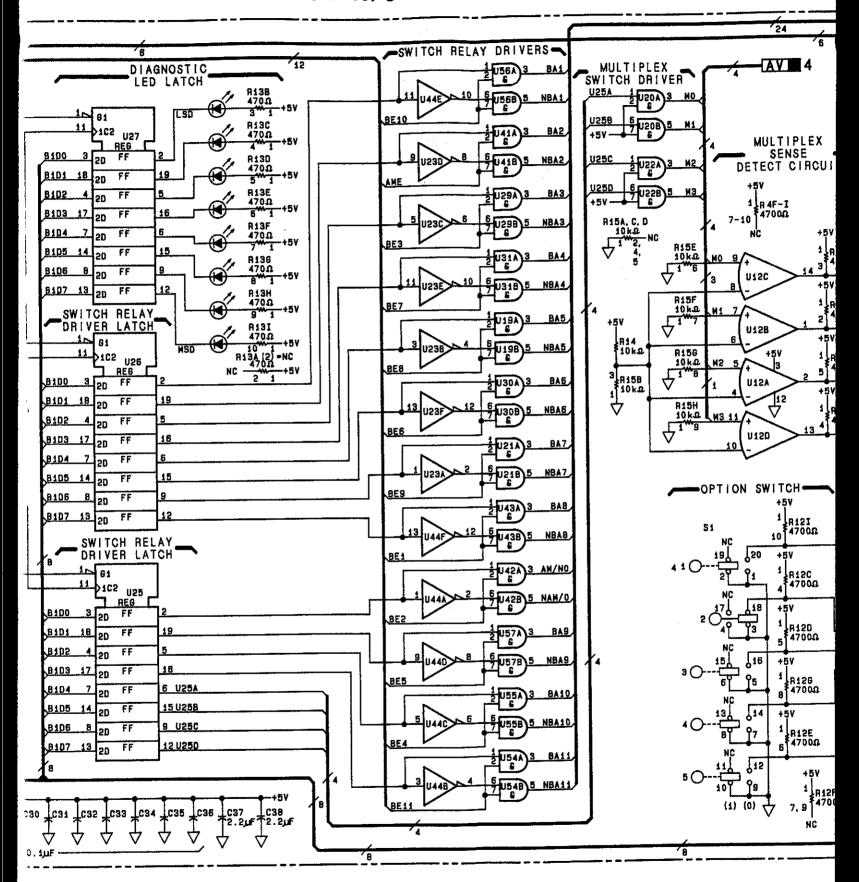
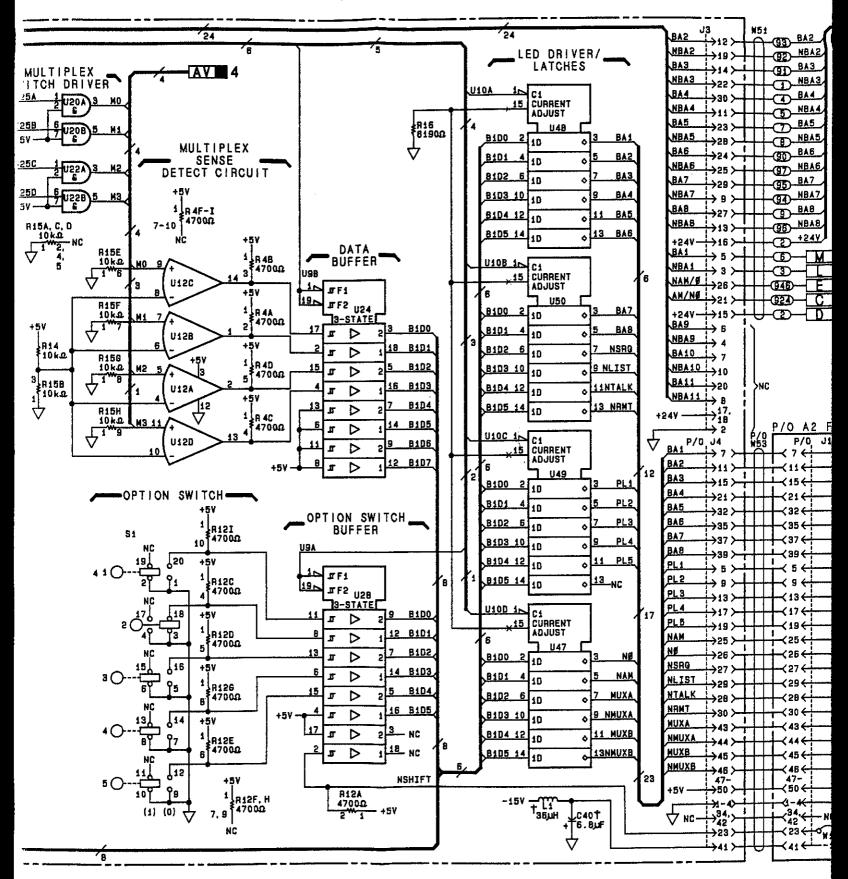





Figure 8-21. Microprocessor Board Assembly Component Locations

F/G. 8-22 SHT. 4 of 5 F SNITCH B B 1

Figure 8-22. Switch and LED Control Cir.

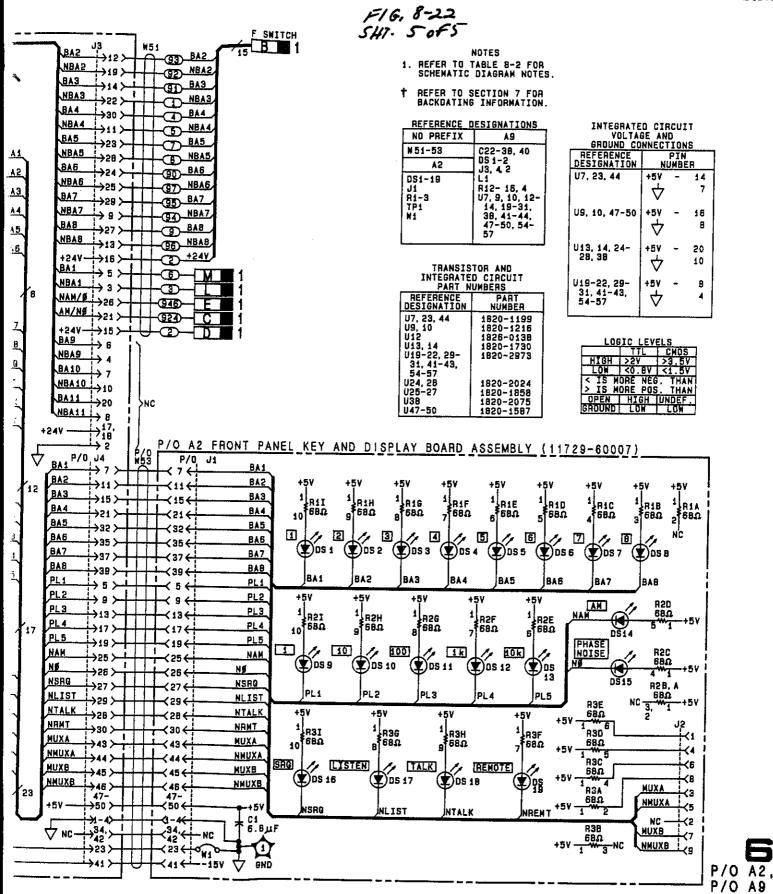


Figure 8-22. Switch and LED Control Circuits Schematic Diagram

SERVICE SHEET 7 --- SHT lofa. POWER SUPPLY CIRCUITS

PRINCIPLES OF OPERATION

General

The Carrier Noise Test Set requires four power supply voltages: +24V, +15V, +5V, and -15V. The transformer supplies all the secondary voltages for the power supply. The secondary is wound as one coil and is center tapped. All the power supplies take the same form. They have a full-wave bridge rectifier that consists of 2 rectifying diodes, a fuse, filter capacitors, a voltage regulator, an overvoltage protection circuit, and an indicator that lights when that power supply is on.

+24V Power Supply

The output of the voltage regulator is dependent on the reference voltage which is set with R11 and R12.

The overvoltage protection circuit consists of a zener diode (VR2) in series with a standard rectifying diode (CR9). When the voltage across VR2 exceeds the threshold of 30 volts, the zener diode turns on. CR11 protects against any reverse voltages that may be applied or negative voltages that may get on the supply line. It protects not only the power supply but also any circuits that may be connected to the +24V supply.

The +24V supply runs the A6 Low Noise Amplifier Assembly and all the microwave switches (see Service Sheet 1).

+15V Power Supply

The overvoltage protection circuit consists of R14, R15, VR3, and Q3. The zener diode (VR3) begins to conduct if the voltage exceeds the threshold of 16 volts. Enough current is drawn through R15 to cause the SCR (Q3) to begin conducting. This blows the +15 volt supply fuse. It may also blow the fuse of any other supply that might have gotten connected to the 15V supply. CR12 protects against negative voltages.

The +15V supply is used for circuits on the A5 Phase Lock Board Assembly.

An analog +5V supply is created by dropping the +15V through R27 and R29. This voltage is used for the A10 IF Amplifier Assembly.

Service

SERVICE SHEET 7 (cont'd)

+5V Power Supply

The +5V supply has a 2-diode rectifition. It uses a large TO-3 dual rectificant of the heat sink assembly.

The voltage regulator is adjustable. reference is set by R9, CR8, R10, and ment R10 is provided to set the regula to +5V, which is necessary for the di

The overvoltage protection circuit is sused for the +15V supply.

The +5V supply is the digital supply only on the A9 Microprocessor Asser

-15V Power Supply

Following the 2 diode rectifier is an protection circuit for the entire instriction circuit protects against incorrect line example, if high voltage, such as 22 plugged in when the line card is set 120V, this circuit will cause the fuse (Fany voltage above 150 Vrms appears to the transformer, this circuit will begin conducting. This, in turn, blowfuse.

SERVICE SHEET 7 (cont'd) _SHT 2 of 2.

+5V Power Supply

The +5V supply has a 2-diode rectifier configuation. It uses a large TO-3 dual rectifier, which is part of the heat sink assembly.

The voltage regulator is adjustable. The voltage reference is set by R9, CR8, R10, and R13. Adjustment R10 is provided to set the regulator very close to +5V, which is necessary for the digital circuits.

The overvoltage protection circuit is similar to one used for the $\pm 15 \mathrm{\mathring{V}}$ supply.

The $\pm 5V$ supply is the digital supply and is used only on the A9 Microprocessor Assembly.

-15V Power Supply

Following the 2 diode rectifier is an overvoltage protection circuit for the entire instrument. This circuit protects against incorrect line voltages. For example, if high voltage, such as 220 or 240V, is plugged in when the line card is set for 100V or 120V, this circuit will cause the fuse (F1) to blow. If any voltage above 150 Vrms appears on the input to the transformer, this circuit will cause Q4 to begin conducting. This, in turn, blows the main fuse.

The overvoltage protection circuit for the -15V supply is similar to the one used for the +24V supply.

The -15V supply provides voltage to the A5 Phase Lock Board assembly and the fan.

TROUBLESHOOTING

As an aid in troubleshooting the Power Supply typical input voltages to the voltage regulators have been placed on the schematic. The voltages are dependent on the line voltage.

Test Equipment

The tolerance of each of the voltage regulators is shown in the following table.

Voltage Regulator	Voltage Tolerance
U1 TP4	$-15V \pm .5V$
U2 TP3	$+5V \pm .25V$
U3 TP2	+15V ± .5V
U4 TP1	$\pm 24 \mathrm{V} \pm .5 \mathrm{V}$

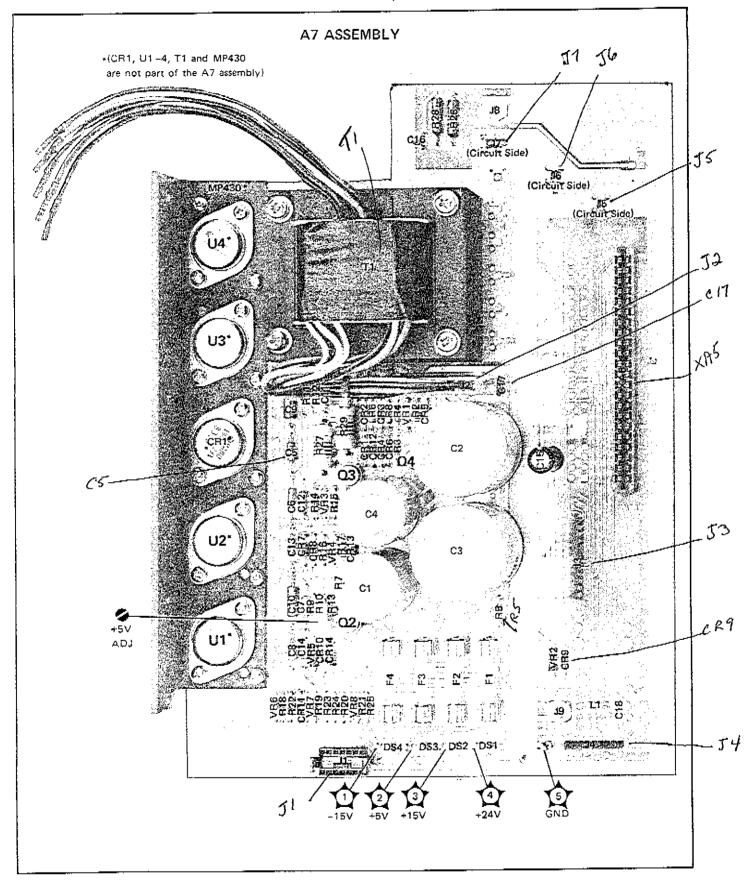
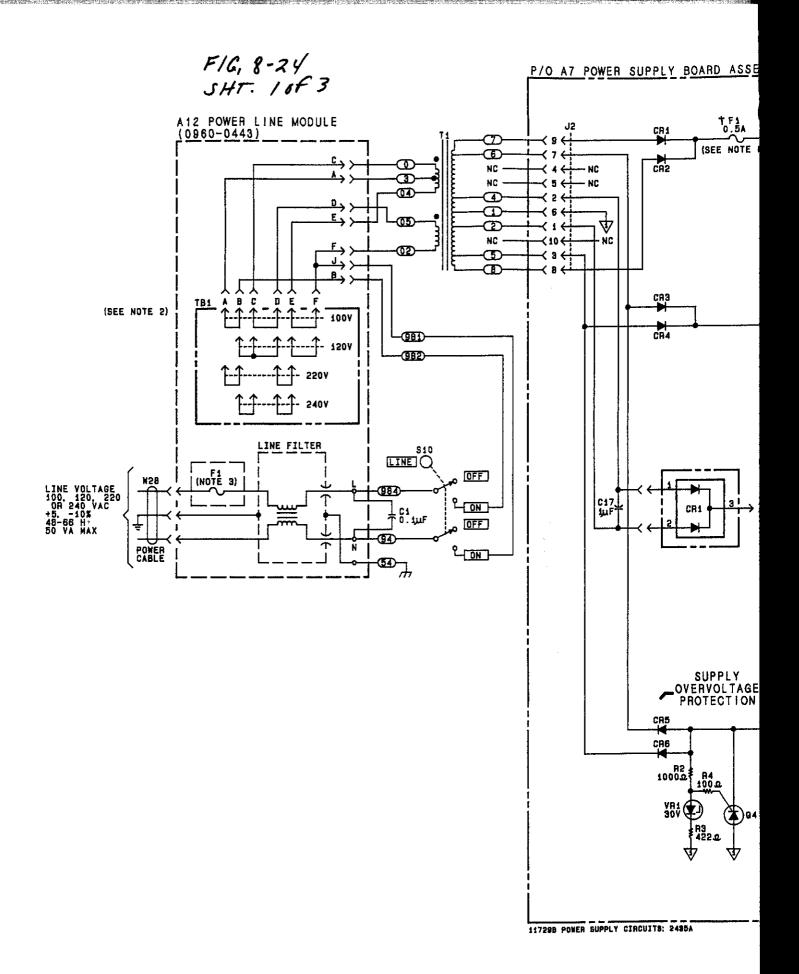
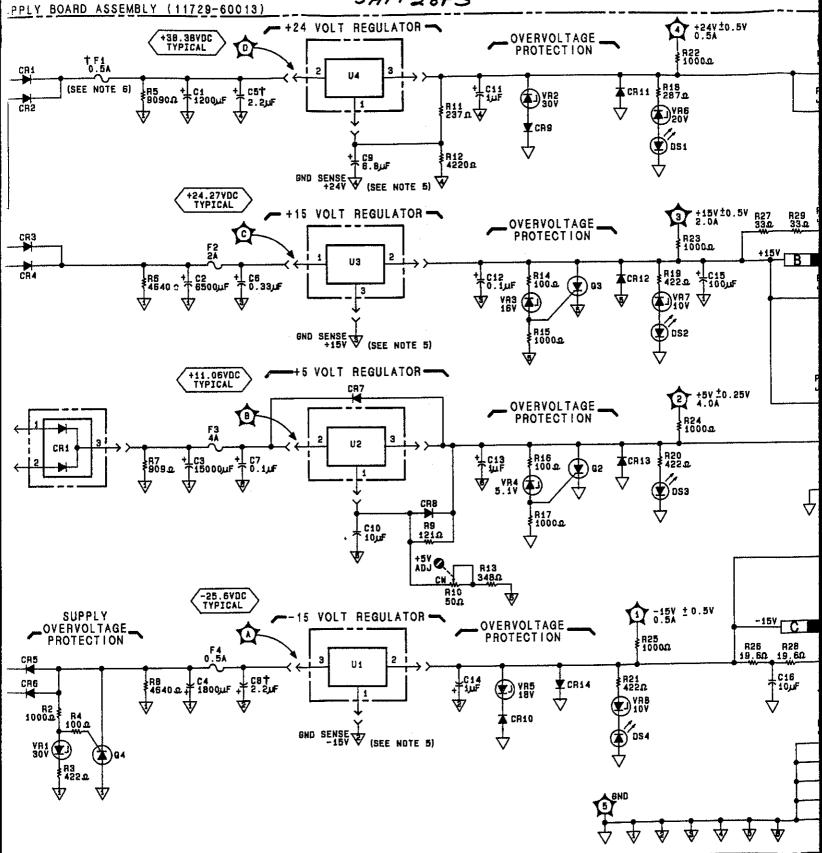




Figure 8-23. Power Supply Board Assembly Component Locations

UITS: 2485A

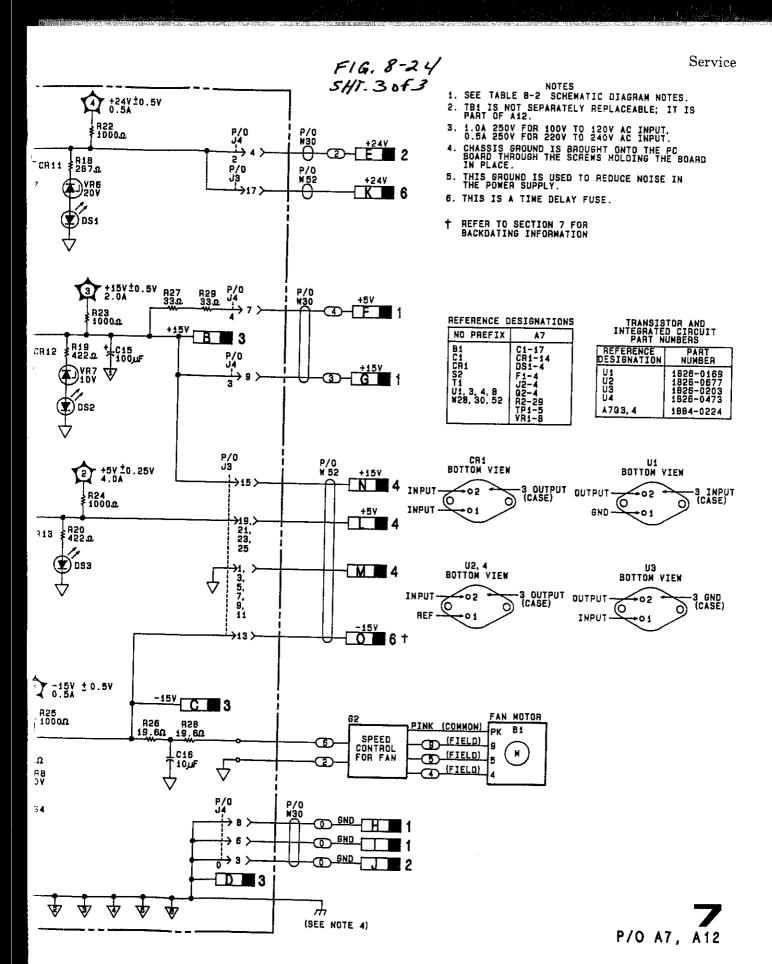


Figure 8-24. Power Supply Circuits Schematic Diagram

APPENDIX A

Manual Changes Required For Use With HP Low Noise Down Converters

INTRODUCTION

This appendix contains manual change instructions for backdating this manual for use with HP Low Noise Down Converters with serial prefixes 2319A and lower.

MANUAL CHANGES

To adapt this manual to your instrument make the changes listed in Section VII (Backdating) and Appendix A.

Table 6-3:

Add the following to the description for the A3 assembly:

When ordering assembly A3, order Service Note 11729B-90002 to retrofit the 11729B to accept the A3 assembly. The Service Note can be ordered from the nearest Hewlett-Packard Sales Office.

Delete A3K1

Delete A3R4.5

Delete A6A1CR7

Change A6A1R4 to 0698-0083 CD8 RESISTOR 1.96k 1% .125W F TC=0±100

Delete A7C17

Delete A7C18

Delete A7L1

Change A7R27 to 0698-3620 CD5 RESISTOR 100 5% 2W MO TC=0±200

Change A7R29 to 0698-3397 CD3 RESISTOR 42.2 1% .5W F TC=0±100

Add the following to the description for the A10 assembly:

When ordering assembly A10, order Service Note 11729B-90001 to retrofit the 11729B to accept the A10 assembly. The Service Note can be ordered from the nearest Hewlett-Packard Sales Office.

Change the part number of W42 to the following:

11729-20027 CD2 CABLE ASSEMBLY

Change the part number of W47 to the following

11729-20041 CD0 CABLE ASSEMBLY

Add the following information to the description for MP 431:

When replacing MP 431 order the following hardware to mount MP 431:

0515-0145 CD7 FLAT HEAD MACHINE SCREW 0.5 QUANTITY 2

3050-0891 CD7 FLAT WASHER QUANTITY 2

2190-0003 CD8 SPLIT LOCK WASHER QUANTITY 2

0535-0004 CD9 HEX NUTS 0.5 QUANTITY 2

Block Diagram 1

Replace BD1 with Figure A-2 in this Appendix.

Service Sheet 1

Replace SS1 with Figure A-3 in this Appendix.

Service Sheet 2

Replace SS2 with Figure A-4 in this Appendix.

Service Sheet 3

Replace the portion of SS3 with Figure A-1 in this Appendix.

FIG. A1 SHT 10 F1

MANUAL CHANGES (cont'd)

NOTE

Replace the text and schematics for Service Sheets 4 through 6 only if your instruments prefix is 2314A and below. Whether or not the text and schematics for Service Sheets 4 through 6 are being replaced, replace Service Sheet 7 with Figure A-12 in this Appendix.

Service Sheet 4

Replace the text for Service Sheet 4 with the following text and replace the component locator photograph and schematic with Figures A-6 and A-7.

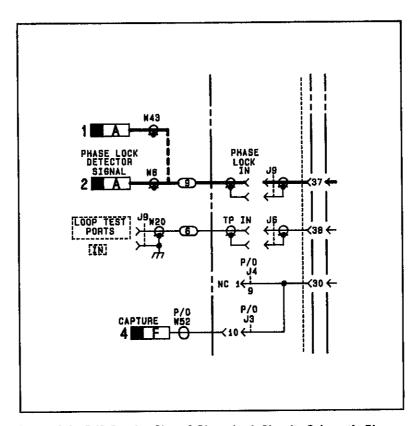


Figure A-1. P/O Service Sheet 3 Phase Lock Circuits Schematic Diagram

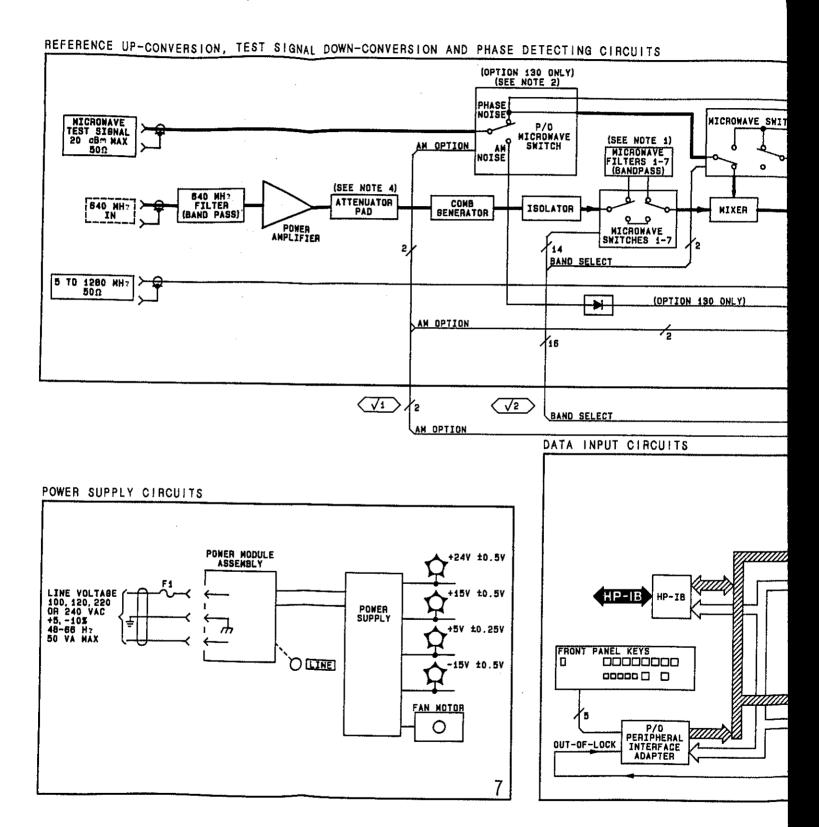


FIG. A-2 SHT. 2 of 4

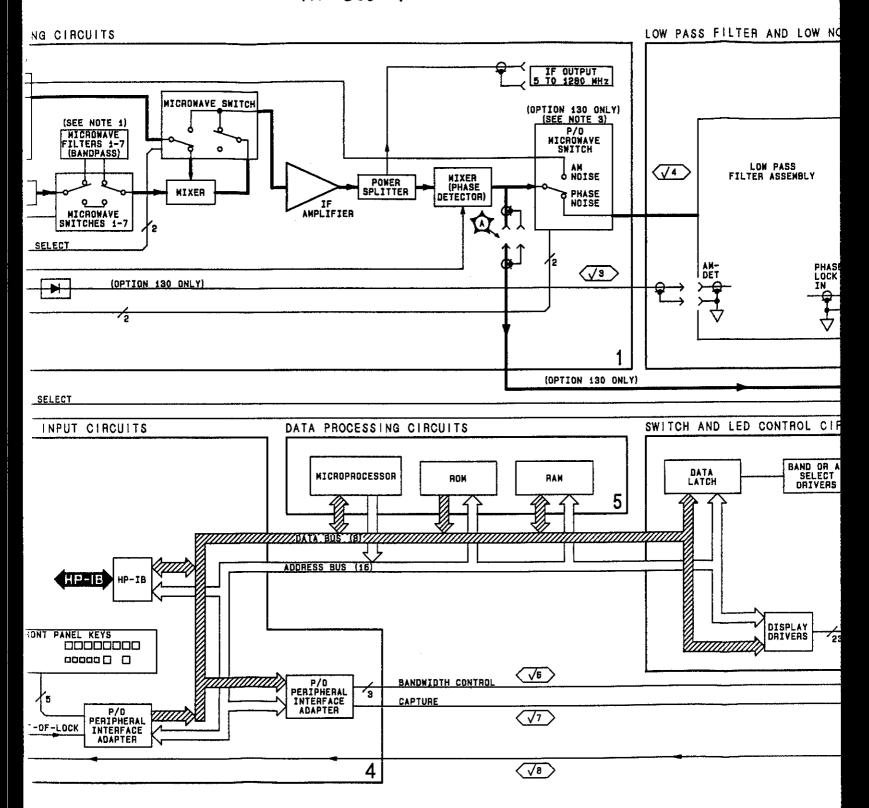
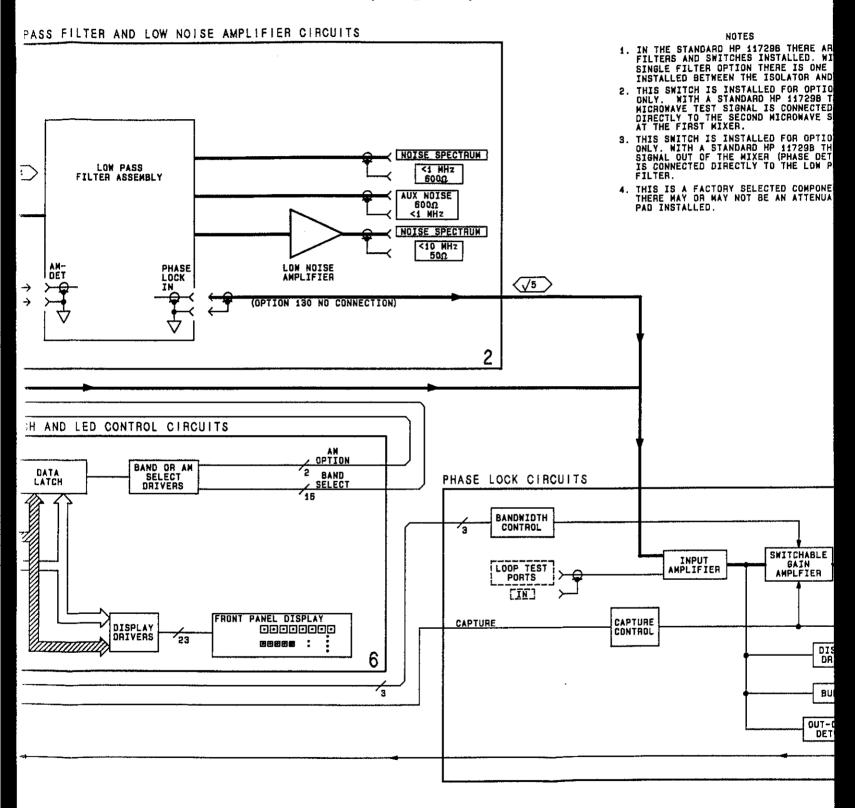
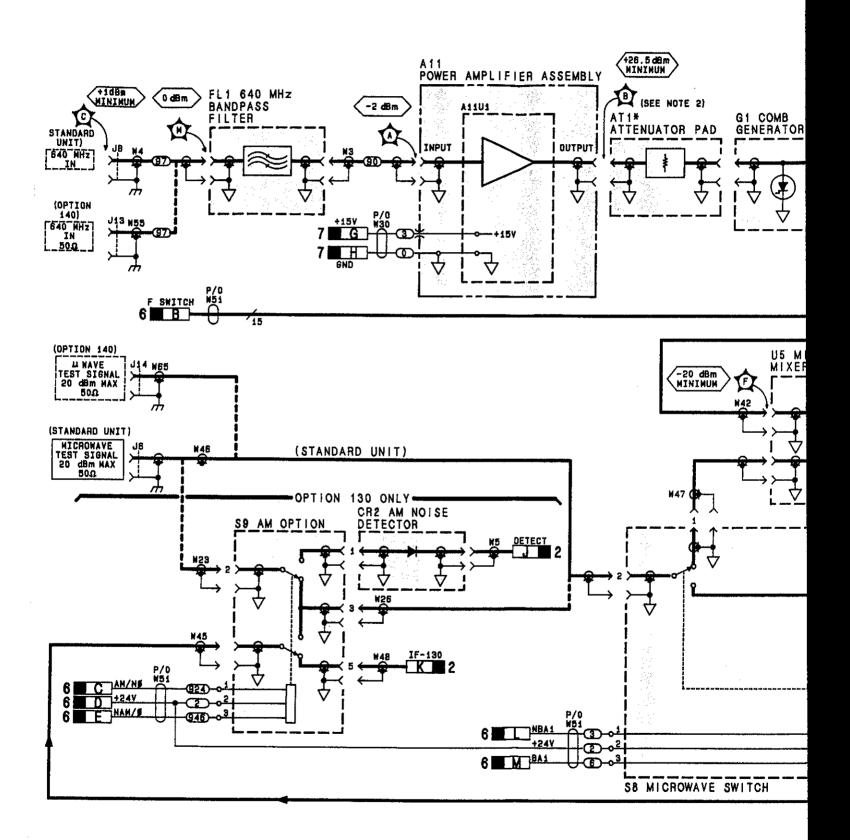
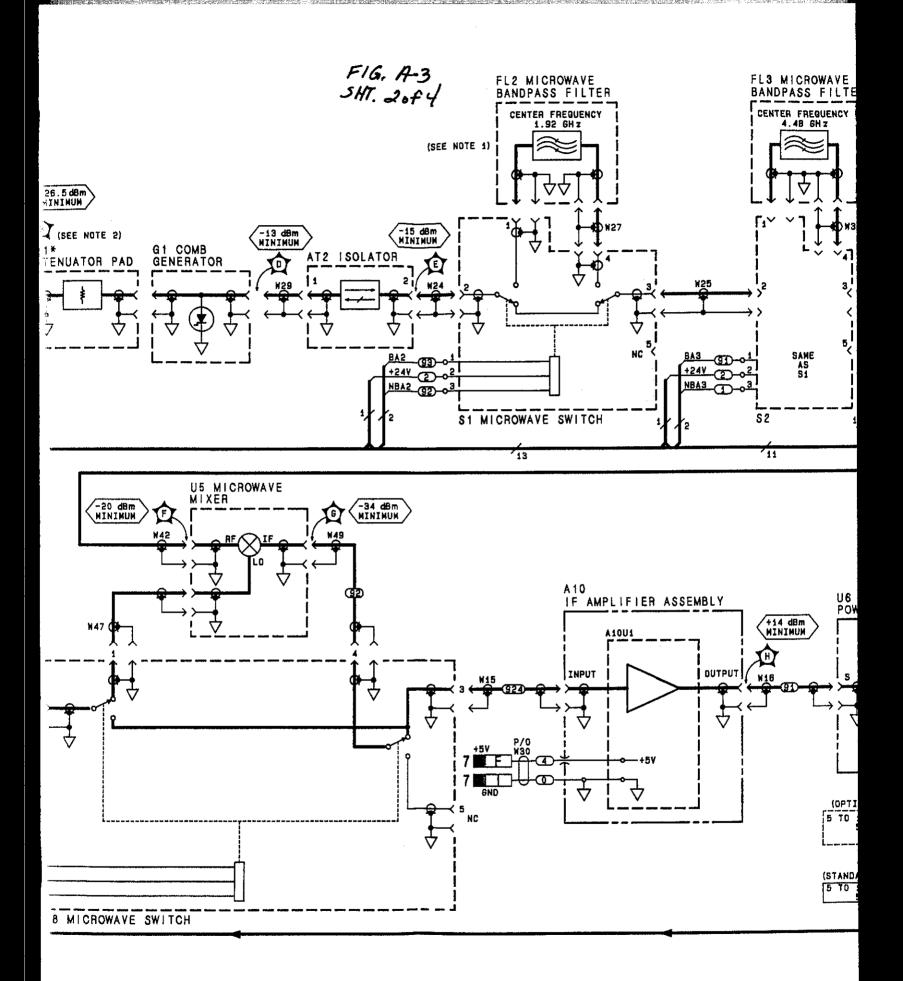
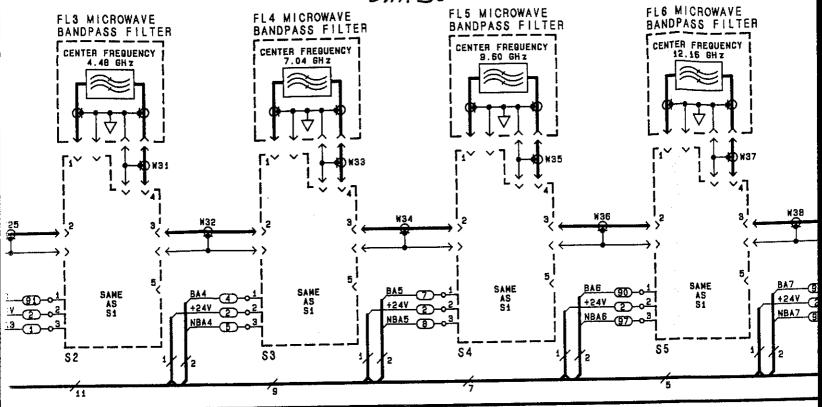
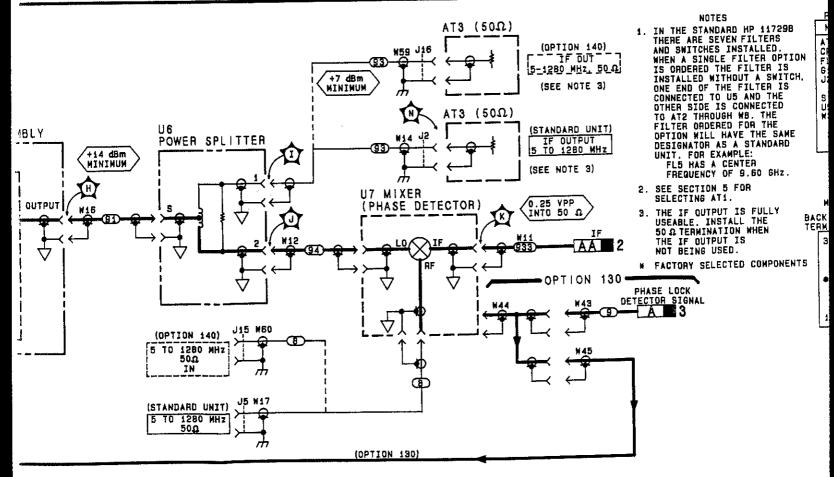


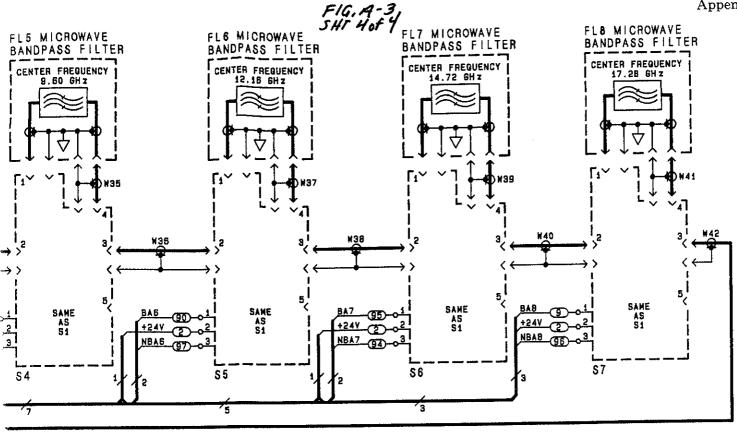
FIG. A-2 SHT. 30F4


FIG. A-2 SHT. 4 of 4 S 1. IN THE STANDARD HP 11729B THERE ARE SEVEN FILTERS AND SMITCHES INSTALLED. WITH A SINGLE FILTER OPTION THERE IS ONE FILTER INSTALLED BETWEEN THE ISOLATOR AND THE MIXER. 2. THIS SWITCH IS INSTALLED FOR OPTION 130 ONLY. WITH A STANDARD HP 11729B THE MICROMAYE TEST SIGNAL IS CONNECTED DIRECTLY TO THE SECOND MICROWAVE SWITCH AT THE FIRST MIXER. 3. THIS SWITCH IS INSTALLED FOR OPTION 130 ONLY. MITH A STANDARD HP 11729B THE SIGNAL OUT OF THE WIXER (PHASE DETECTOR) IS CONNECTED DIRECTLY TO THE LOW PASS FILTER. NOISE SPECTRUM <1 HH2 6000 4. THIS IS A FACTORY SELECTED COMPONENT. THERE MAY OR MAY NOT BE AN ATTENUATOR PAD INSTALLED. AUX NOISE 600Ω <1 MHz NOISE SPECTRUM <10 MHz 50Ω $\sqrt{5}$ NECTION) PHASE LOCK CIRCUITS BANDWIDTH CONTROL FREG CONT DC-FM (t1V) SWITCHABLE INPUT AMPLIFIER LOOP TEST > INTEGRATOR BAIN AMPLFIER FREG CONT X-OSC (±10V) CAPTURE CAPTURE CONTROL DISPLAY 6 LOOP TEST PORTS BUFFER OUT-OF-LOCK OUT-OF-LOCK DETECTOR 3


Figure A-2. Overall Functional Block Diagram

(FIG. A-3 SHT. 10f4



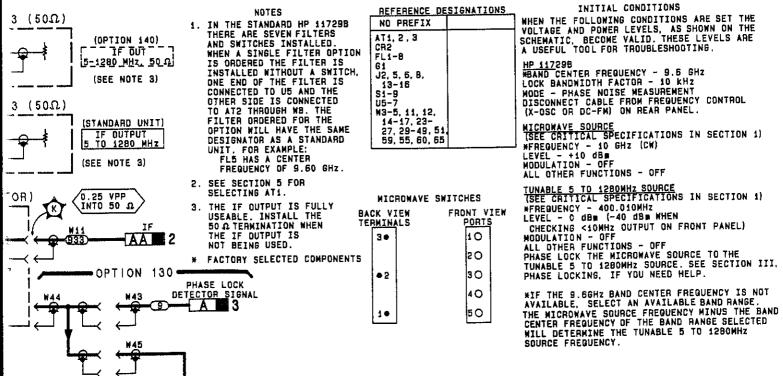


Figure A-3. Reference Up-Conversion, Test Signal Down-Conversion, and Phase Detecting Circuits Schematic Diagram

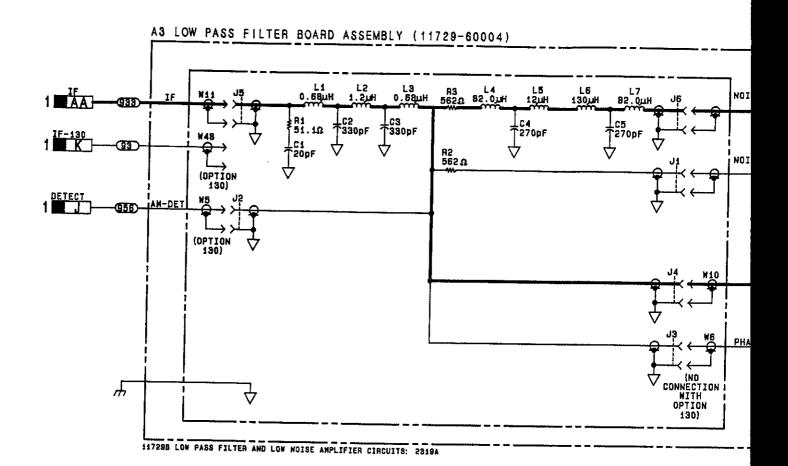
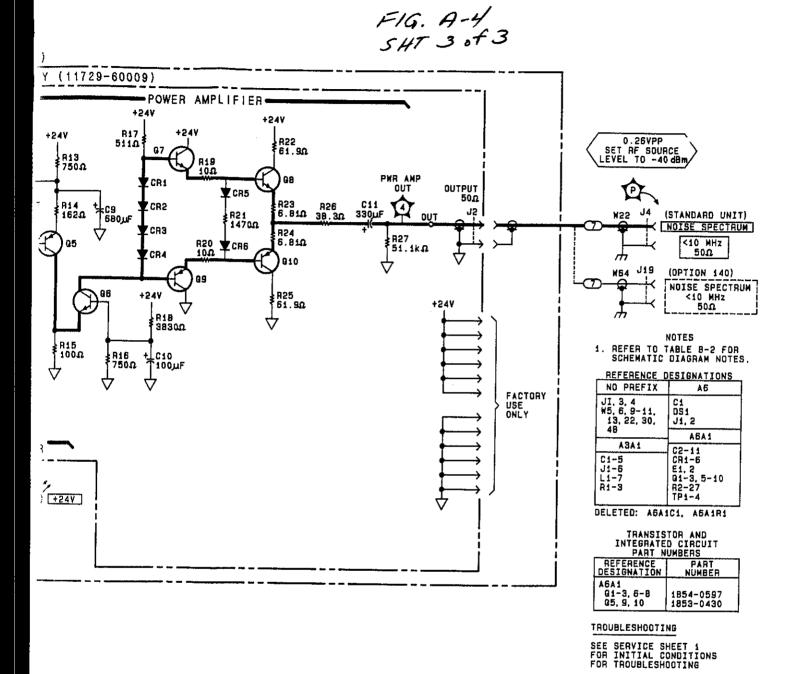



FIG. A-4 SHT 2 of 3

A3, A6, A6A1

Figure A-4. Low Pass Filter and Low Noise Amplifier Schematic Diagram

FIG. A-5 SHT 1 of 6

SERVICE SHEET 4

PRINCIPLES OF OPERATION

General

The A9 Microprocessor Board Assembly receives data from the A2 Front Panel Key and Display Board Assembly (local) or from HP-IB (remote).

Local inputs use the following circuits:

- a. keyboard encode,
- b. keyboard debounce circuit, and
- c. peripheral interface adapter (PIA).

The PIA manages local operation and monitors the out-of-lock signal from the A5 Phase Lock Board assembly.

Remote inputs use the following circuits:

- a. HP-IB management line transceiver,
- b. HP-IB data line transceiver, and
- c. HP-IB interface.

The HP-IB interface manages remote operation.

Keyboard Encode

The A2 Front Panel Key and Display Board Assembly consists of 16 keys. Keyboard encode U46, U47 and U40 are connected to these keys in such a way that it becomes a 1-of-16 priority encoder. Inputs to U46 and U47 are active low. When a key is pressed, the corresponding signal line goes to 0V. U46 and U47 sense the line and encodes it to a binary number.

Keyboard Debounce Circuit

U12B adds a 21 ms delay to ensure that a key has been depressed instead of a momentary spike that is being detected. If a key is held for 21 ms, the output of flip-flop U41B goes high. U7 pin 40 (CA1) acts as a flag. If there is a high signal on this line, the peripheral interface adapter informs the microprocessor that a key has been pressed.

Out-of-Lock Debounce Circuit

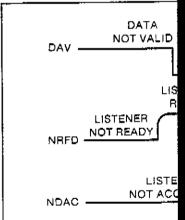
This circuit detects either a negative going edge (lock to out-of-lock) or positive going edge (out-of-lock to lock). In addition, it informs the microprocessor (via the PIA) of the change in condition. A change is detected immediately when the signal goes from lock to out-of-lock. When the signal goes from out-of-lock to lock, U12A causes a 9.7 ms delay before clocking the results to the peripheral interface adapter, which notifies the microprocessor of the change. When the microprocessor is informed of a change in state, it re-enables the circuitry by enabling U7 pin 14 (PB4), which causes flip-flop U41A to reset U53. The microprocessor then looks for a signal of the opposite sense on the input to U53. U7 pin 15 (PB5) keeps track of the signal sense that the microprocessor is expecting.

Peripheral Interface Adapter (PIA)

The PIA, U7, manages the exchange of information between the front panel and the microprocessor. Lines PB4-6 control the out-of-lock debounce circuitry. Line PB7, which drives the capture signal on the A5 Phase Lock Board assembly, is activated when the CAPTURE key is pressed. Lines PA0-3 and PA7 read the

SERVICE SHEET 4 (cont'd

keyboard encode circuits to pressed. Lines PA4-6 genera


HP-IB Management Trans

These transceivers allow bi-(DIO1-8) and the handshak HP-IB management line tra and the HP-IB data line tra

HP-IB Interface

HP-IB interface U3 manage the microprocessor and the l of flow of information throu U35.

Remote inputs to the Carrencoded control and data into the instrument via five control lines are labeled allow the controller to gain and impart other approprial lines are labeled DAV, NF chronous control informati (controller) and the listener for a more detailed explanal labeled DIO1 through DIO8.

Start with the talker waiting for indicating it is ready.

When the listener is ready, NRFD 9 D101 through D108 and sets DAV (o

NRFD then goes low (true) and the ta the data (or ignored it) by releasin data is accepted).

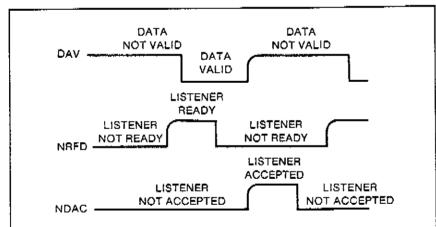
The talker sets DAV high (false) an (NOTE that if ATN is true, all instruenther they are talkers, listeners, to do with handshaking, if ATN is

Figure A-5. Simplified HP-1B Hat and One Liste

FIG. A-5 SHT 20+6

SERVICE SHEET 4 (cont'd)

keyboard encode circuits to monitor when a front panel key is being pressed. Lines PA4-6 generate the filter ranges.


HP-IB Management Transceiver and Data Line Transceiver

These transceivers allow bi-directional signal flow on the data lines (DIO1-8) and the handshake lines (DAV, NRFD, and NDAC). The HP-IB management line transceiver manages the handshake lines and the HP-IB data line transceiver manages the data lines.

HP-IB Interface

HP-IB interface U3 manages the exchange of information between the microprocessor and the HP-IB. U3 also determines the direction of flow of information through bi-directional transceivers U34 and U35.

Remote inputs to the Carrier Noise Test Set are in the form of encoded control and data information. Control information is input to the instrument via five control lines and three handshake lines. The control lines are labeled ATN, SRQ, REN, IFC and EOI. They allow the controller to gain the Carrier Noise Test Set's attention and impart other appropriate control information. The handshake lines are labeled DAV, NRFD, and NDAC. They provide asynchronous control information for data transfer between a talker (controller) and the listener (Carrier Noise Test Set). See Figure A-5 for a more detailed explanation of handshake lines. Data lines are labeled DI01 through DI08.

Start with the talker waiting for the listener to release NRFD (not ready for data) indicating it is ready.

When the listener is ready, NRFD goes high (false). The talker then places valid data on D101 through D108 and sets DAV (data valid) low (true).

NRFD then goes low (true) and the talker waits for the listener to indicate it has accepted the data (or ignored it) by releasing the NDAC (not data accepted) to a high (false, i.e.,

The talker sets DAV high (false) and again waits for the listener to release NRFD.

(NOTE that if ATN is true, all instruments on the bus must handshake regardless of whether they are talkers, listeners, or bystanders. Being in remote or local has nothing to do with handshaking. If ATN is false, they only handshake if addressed).

panel and uitry. Line ssembly, is .7 read the

Figure A-5. Simplified HP-IB Handshake between a Talker (Computer Controller) and One Listener (Carrier Noise Test Set)

Address Decoding Check

Test Equipment

SERVICE SHEET 4 (cont'd)

TROUBLESHOOTING USING

Run the following tests

Purpose. To verify the microp transfer that address to the se decoded at the chip.

Signature Multimeter

Setup. Turn the Carrier Noise cover. Locate the A9 Micropro that hold the board in place. Th board laying parallel to the bot

Connect the signature analyzed

- 1. START/ST/SP to SAST1 (A
- 2. STOP/QUAL to SASTI (A9
- 3. CLOCK to SACLK (A9TP3)
- 4. GND to GND (A9TP1)

Set the signature analyzer con-

- 1. Function: Signature
- 2. Polarity: Clock Start.....

Stop

Connect a jumper cable between (A9TP1). Turn the Carrier Nois

> The test setup condition Check are the same for therefore signatures m all three service sheets.

Connect the signature analyz Table A-1 and verify the signar

Disconnect the signature a NFREERUN (A9TP5) and GN

ROM Operation Check

Purpose. To verify that the mid in ROM and then execute that

f 16 keys. a way that w. When a se the line

t Panel Key

rom the A5

astead of a e output of h signal on at a key has

or positive sor (via the a the signal lock, U12A ce adapter. rocessor is U7 pin 14 1 looks for a rack of the

SERVICE SHEET 4 (cont'd)

, being

Jet

ta lines C). The

ke lines

etween

rection

34 and

orm of

sinput e lines.

I. They

ention ishake

> asyntalker

re A-5

ies are

TROUBLESHOOTING USING SIGNATURE ANALYSIS

NOTE

Run the following tests in the sequence listed.

Test Equipment

Address Decoding Check

Purpose. To verify the microprocessor can generate an address, transfer that address to the selected chip. The correct address is decoded at the chip.

Setup. Turn the Carrier Noise Test Set off and remove the bottom cover. Locate the A9 Microprocessor Board. Remove the 3 screws that hold the board in place. The A9 assembly is the Printed Circuit board laying parallel to the bottom of the instrument.

Connect the signature analyzer Timing Pod as follows:

- 1. START/ST/SP to SAST1 (A9TP4)
- 2. STOP/QUAL to SAST1 (A9TP4)
- 3. CLOCK to SACLK (A9TP3)
- 4. GND to GND (A9TP1)

Set the signature analyzer controls as follows:

1.	Function: Signature	ormal
2.	Polarity: Clock Falling ed Start Rising ed Stop Rising ed	ge (1)

Connect a jumper cable between NFREERUN (A9TP5) and GND (A9TP1). Turn the Carrier Noise Test Set on.

NOTE

The test setup conditions for the Address Decoding Check are the same for Service Sheets 4,5 and 6, therefore signatures may be taken concurrently on all three service sheets.

Connect the signature analyzer's probe to the points indicated in Table A-1 and verify the signatures.

Disconnect the signature analyzer and the short between NFREERUN (A9TP5) and GND (A9TP1).

ROM Operation Check

Purpose. To verify that the microprocessor can read the data stored in ROM and then execute that code.

SERVICE SHEET 4 (cont'd)

Table A-1. Signatures for Verifying Address

	í
U3	٤
1376	_
0000	-
0003	-
טטטט	00
FFFF	00
8484	96
_	00
-	UU
	FF
	1376 0000 0003 UUUU FFFF

Setup. Set the diagnostic switch A9S the ROM test position shown below.

Diagnostic Switch S2	ROM Test Logic Level
1	0
2	1
3	0
4	0

Locate the 8 Red LEDs between U28 are numbered D0-D7 with D7 being portion of the microprocessor board

Turn the Carrier Noise Test Set on to

Check the pattern of the flashing LEI

ROM Passes Test — D5 remains on a and off. This verifies that the addr ROM and the microprocessor are wo

ROM Fails Test — D5 remains on and This signifies that the address and Check for short circuits.

RAM Operation Check

Purpose. To verify that the RAM is a

Setup. Set the diagnostic switch As shown below.

1
0
0
0

or data) data on

ocepted se, i.e.,

D. Hess of nothing

ntroller)

SERVICE SHEET 4 (cont'd)

Table A-1. Signatures for Verifying Address Decoding

Pin	ИЗ	U7
8	1376	
9	0000	_
10	0003	_
21	UUUU	0003
22	FFFF	0003
23	8484	9668
24		0003
35	_	บบบบ
36	_	FFFF

Setup. Set the diagnostic switch A9S2 (right side of A9 assembly) to the ROM test position shown below.

Diagnostic Switch S2	ROM Test Logic Level
1	0
2	1
3	0
4	0

ss, is

om

WS

uit

nal

(2)

(1)

(1)

1D

in

en

:ed

Locate the 8 Red LEDs between U28 and U29. The individual LEDs are numbered D0-D7 with D7 being the LED closest to the hinged portion of the microprocessor board assembly.

Turn the Carrier Noise Test Set on to reset the instrument.

Check the pattern of the flashing LEDs to see if ROM passes the test.

ROM Passes Test — D5 remains on and all the other LEDs flash on and off. This verifies that the address and data busses between ROM and the microprocessor are working.

ROM Fails Test — D5 remains on and all the other LEDs remain off. This signifies that the address and data busses have a problem. Check for short circuits.

RAM Operation Check

Purpose. To verify that the RAM is operational.

Setup. Set the diagnostic switch A9S2 to the RAM test position shown below.

Diagnostic Switch S2	RAM Test Logic Level
1	1
2	0
3	0
4	0

SERVICE SHEET 4 (cont'd)

Turn the Carrier Noise Test Set off then

Check the pattern of the flashing LEDs to

RAM Passes Test — D4 is on and D0-D3 c the counting sequence repeats. This verif can access RAM properly.

RAM Fails Test — D4 is on but D0-D3 d sequence. This shows that the RAM or th may be faulty.

Turn the Carrier Noise Test Set off.

Signature Analysis Test — Microproc

Purpose. The Microprocessor runs a prog of data from the Microprocessor to the Pe and the HP-IB Interface.

Connect the signature analyzer Timing

- 1. START/ST/SP to SAST2 (A9TP6)
- 2. STOP/QUAL to SAST2 (A9TP6)
- 3. CLOCK to SACLK (A9TP3)
- 4. GND to GND (A9TP1)

Set the signature analyzer controls as fo

1.	Function: Signature	
2.	Polarity: Clock	
	Start	ı
	Stop	

Set the Diagnostic Switch A9S2 as follow

Diagnostic Switch S2	Signature Analysis Test Logic Level
1	1
2	1
3	0
4	0

Turn the Carrier Noise Test Set on to res

Connect the signature analyzer's probe Table A-2 and verify the signatures.

NOTE

The test setup conditions for the S Test are the same for Service Shee fore signatures may be taken c three service sheets.

Low Pass Filter and Low I Circuit FIG. A-5 SHT 5 of 6

SERVICE SHEET 4 (cont'd)

Turn the Carrier Noise Test Set off then on to reset the instrument. Check the pattern of the flashing LEDs to see if RAM passes the test.

RAM Passes Test — D4 is on and D0-D3 count, all LEDs turn on then the counting sequence repeats. This verifies that the microprocessor can access RAM properly.

RAM Fails Test — D4 is on but D0-D3 do not go through counting sequence. This shows that the RAM or the control lines to the RAM may be faulty.

Turn the Carrier Noise Test Set off.

Signature Analysis Test - Microprocessor and I/O Check

Purpose. The Microprocessor runs a program to verify transmission of data from the Microprocessor to the Peripheral Interface Adapter and the HP-IB Interface.

Connect the signature analyzer Timing Pod as follows:

- 1. START/ST/SP to SAST2 (A9TP6)
- 2. STOP/QUAL to SAST2 (A9TP6)
- 3. CLOCK to SACLK (A9TP3)
- 4. GND to GND (A9TP1)

Set the signature analyzer controls as follows:

1.	Function: Signature	Normal
2.	Polarity: Clock Falling	edge (2)
	Start Rising Stop Falling	edge (2)

Set the Diagnostic Switch A9S2 as follows:

Diagnostic Switch 82	Signature Analysis Test Logic Level
1	1
2	1
8	0
4	0

Turn the Carrier Noise Test Set on to reset the diagnostic switch.

Connect the signature analyzer's probe to the points indicated in Table A-2 and verify the signatures.

NOTE

The test setup conditions for the Signature Analysis Test are the same for Service Sheets 4, 5 and 6, therefore signatures may be taken concurrently on all three service sheets.

Low Pass Filter and Low Noise Amplifier Circuits A3, A6, A6A1 APPENDIX A

Appendix A

SERVICE SHEET 4 (cont'd)

Table A-2. Signatures for Verifying Input/Output Operat

Pin	U3	U7	Pin
6	_	C8P8	22
7	_	5HF2	23
8	6978	FP47	24
9	P04P	0000	26
10	UHU1	C6FA	27
11	_	4A88	28
12	P8CF	92H3	29
13	4771	5F06	30
14	AF7U	F1A0	31
15	6U22	99CH	32
16	068C	_	33
17	P66C	<u></u>	35
18	866F	_	36
19	F3F8	3 P 71	39
21		UHU1	

y) to

EDs iged

test.

veen

off.

tion

:п

ρr

g A

SERVICE SHEET 4 (cont'd)

Table A-2. Signatures for Verifying Microprocessor and Input/Output Operation

Pin	U3	U7		Pin	U3	U7
6		C8P8]	22	_	1HCU
7	l —	5HF2		23	_	3361
8	6978	FP47	l,	24	_	1HCU
9	P04P	0000	ı	26	l —	F3F8
10	UHU1	C6FA		2 7	_	866F
11	-	4A88		28	_	P66C
12	P8CF	92H3	l	29	_	068C
13	4771	5F06		30	_	6U22
14	AF7U	F1A0	Н	31	-	AF7U
15	6U22	99CH		32	_	4771
16	068C	_		33	_	P8CF
17	P66C	- 1	i	35		U46P
18	866F	_		36		675A
19	F3F8	3P71		39	_	7F37
21	_	UHU1				<u> </u>

Disconnect the signature analyzer timing pod.

Reset the Diagnostic Switch A9S2 to the normal operation position shown as follows:

Diagnostic Switch S2	Normal Operation Logic Level
1	1
2	1
3	1
4	1

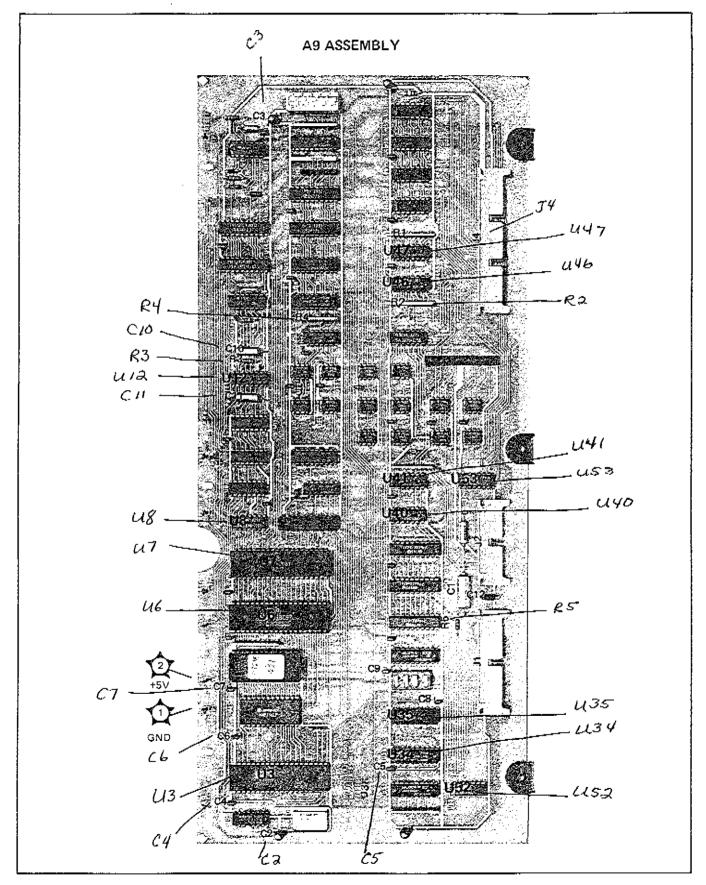
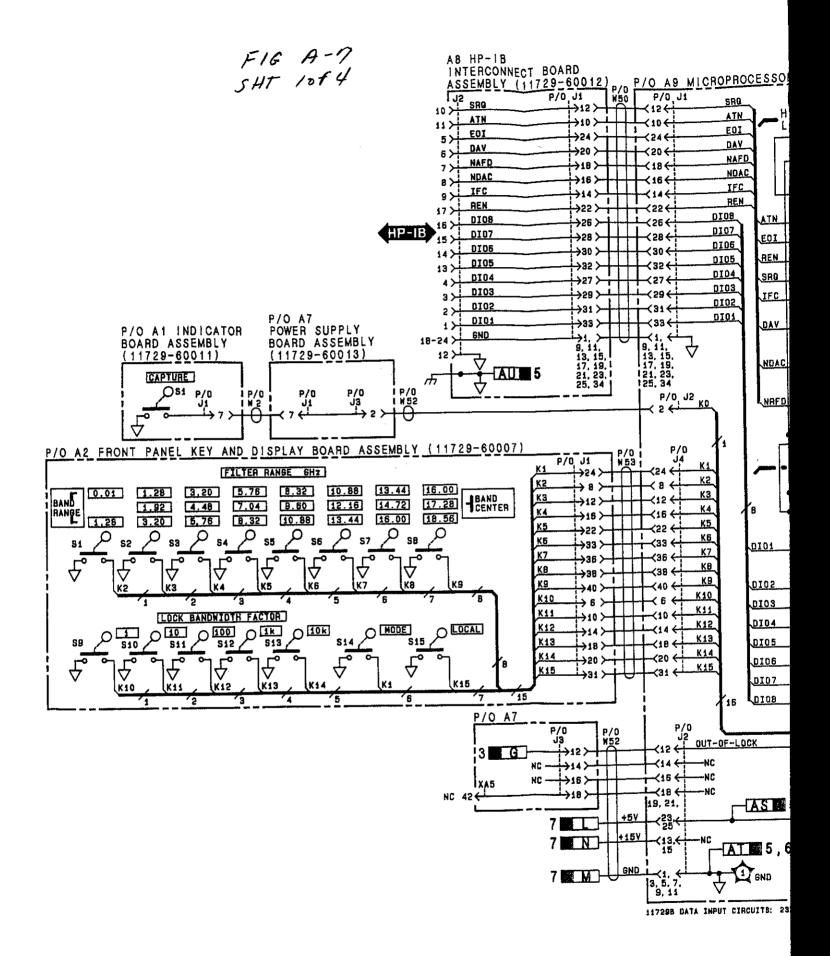



Figure A-6. Microprocessor Board Assembly Component Locations

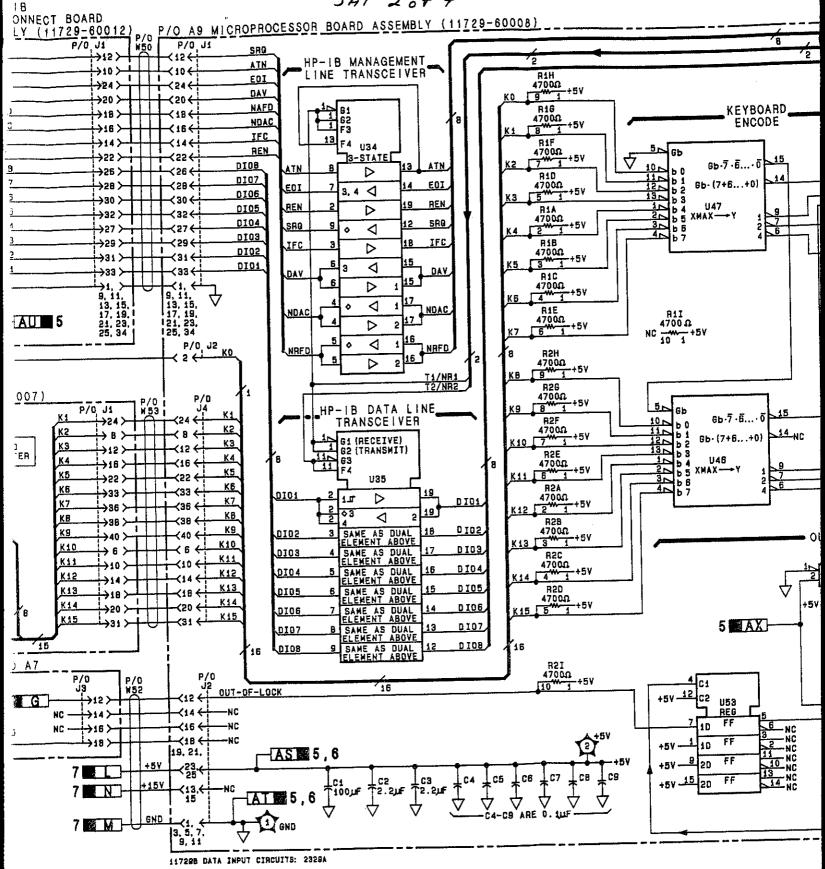
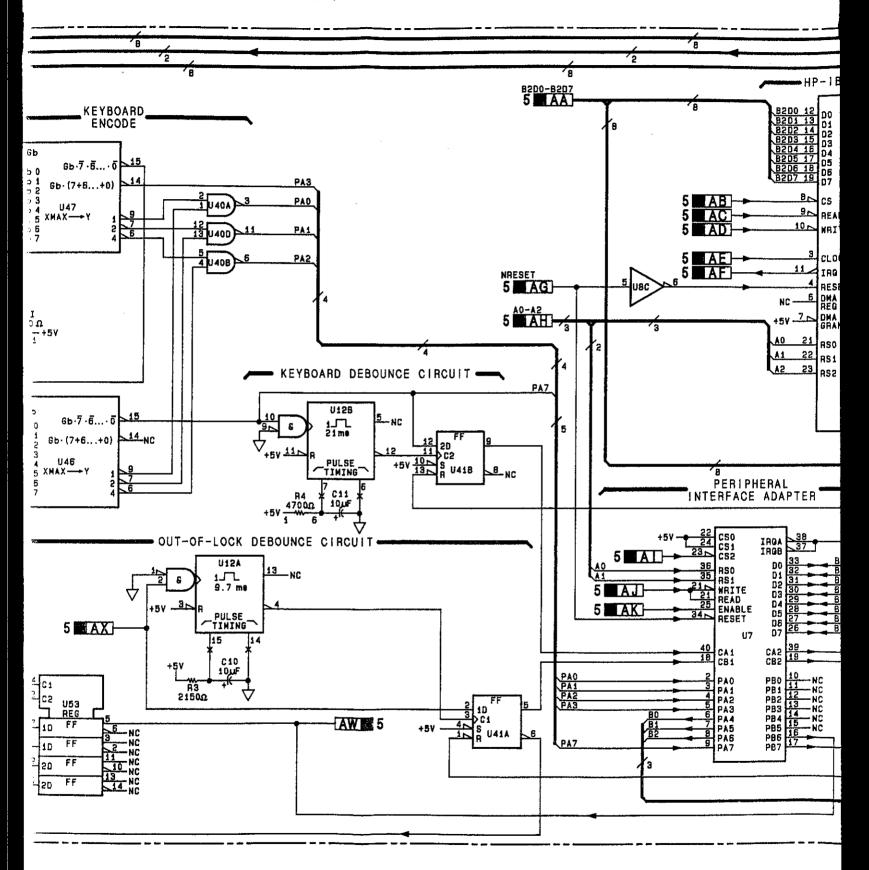



FIG. A-7 SHT 30F4

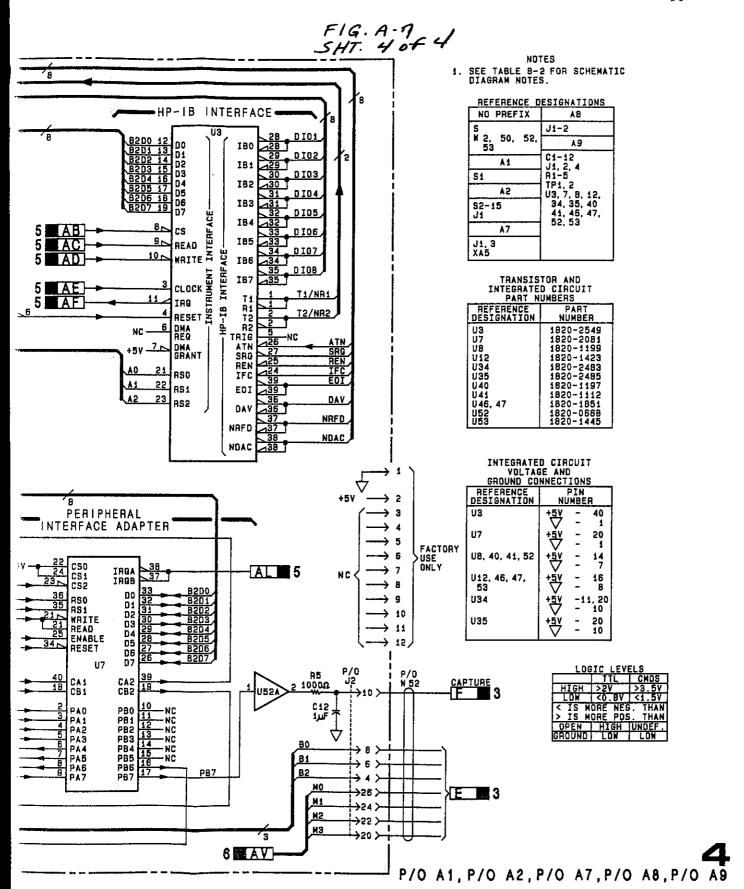


Figure A-7. Data Input Circuits Schematic Diagram

DATA INPUT CIRCUITS

Service Sheet 5

Replace the text for Service Sheet 5 with the following text and replace the component locator photograph and schematic with Figures A-8 and A-9.

SERVICE SHEET 5

PRINCIPLES OF OPERATION

General

The data processing circuits provide the timing, calculation, and control for the Carrier Noise Test Set. The microprocessor executes the instructions stored in ROM (Read Only Memory). Data is exchanged between the microprocessor and other circuits on the A9 Microprocessor Board Assembly via the data bus (D0-D7). Circuits are enabled to respond to the data on the data bus by control signals. These control signals are derived from the address bus by the address decoders. Data values that must be stored are placed in the RAM (that is, Random Access Memory also known as read-write memory).

Microprocessor

Microprocessor U6 controls the functions of the instrument by executing the instructions stored in ROM.

The data bus (D0 through D7) consists of eight bidirectional lines that are used to transfer 8-bit positive-true data bytes to and from the microprocessor. The microprocessor reads data from ROM AND RAM, the PIA (local) or the HP-IB interface (remote). Information on the data bus is buffered as it enters or leaves the microprocessor.

The address bus (A0 through A15) consists of sixteen unidirectional lines that transfer an address from the microprocessor to the peripheral interface adapter, HP-IB interface, ROM, RAM and the address decoders.

Interrupt request (IRQ at pin 3) and fast interrupt request (FIRQ at pin 4) are used to interrupt program execution. IRQ detects an interrupt from the HP-IB interface. FIRQ detects an interrupt from the peripheral interface adapter. Nonmaskable interrupt (NMI at pin 2), which is active low, is connected to +5V. Therefore, it is always inactive.

The halt signal (HALT at pin 40), which is active low, is connected to +5V. Therefore, the microprocessor is never halted by this signal.

An external 4 MHz clock signal is connected to the microprocessor via pin 38 (EXTAL). An internal divide-by-4 circuit is used to develop the 1 MHz system clock E (pin 34). The XTAL signal line is grounded because external timing is used.

The reset signal (RESET at pin 37) is used to start the microprocessor from a power-down condition. When RESET is active (low), the microprocessor becomes inactive.

The memory ready signal input to the microprocessor (MRDY at pin 36) is connected to ± 5 volts to enable the 1 MHz system clock rate.

The read/write signal (pin 32) controls the direction of data transfer on the data bus. When the microprocessor is available to accept data, this signal is high, indicating that the microprocessor is in the read state. When data is being transferred out onto the data bus, this signal is low, indicating that the microprocessor is in the write state.

SERVICE SHEET 5 (

ROM and RAM

The ROM (Read Only lalso known as read-Microprocessor, ROM is used for temporary and data calculations

16 MHz Clock and 10

The 16 MHz clock is the bly. Its frequency is created U1, a divide-by-4 complaces — pin 3 (CLOC) of the microprocessor.

The microprocessor h verts the 4 MHz to 1 M (E) and provides cloc circuitry.

Reset Circuit

The reset circuitry signequence. A reset signent, initializes the months in the instrument does

Address Decoders

U17 is a programmab the input levels to U1 circuits or test points

> U3 ROM U39 Data Buffer U37 Data Buffer Test Point SAST

U17 is also used to e further decoding of circuits.

Address Switch

Address switch S11 d sets the HP-IB address labeled A1 through A significant bit. For t allowable addresses a shipped from the fact instrument to listen of position. These switch

HP-IB Address Buff

U33 is a tri-state buffe to determine the setti

SERVICE SHEET 5 (cont'd) ~ SHT. コッチク

he com-

ROM and RAM

The ROM (Read Only Memory) and RAM (Random Access Memoryalso known as read-write memory) provide the memory for the Microprocessor. ROM U3 stores the program information. RAM U4 is used for temporary storage of keyboard and HP-IB information, and data calculations.

16 MHz Clock and 16 MHz Clock Divider

for the n ROM d other)7). Cir.. These s. Data lemory

The 16 MHz clock is the master clock for the Microprocessor Assembly. Its frequency is crystal controlled. The output of the clock is fed to U1, a divide-by-4 circuit. The 4 MHz output of U1 goes to two places — pin 3 (CLOCK) of the HP-IB interface and pin 38 (EXTAL) of the microprocessor.

The microprocessor has an internal divide-by-four circuit that converts the 4 MHz to 1 MHz. This 1 MHz signal is output on U6 pin 34 (E) and provides clocking for the Carrier Noise Test Set's digital circuitry.

ng the

Reset Circuit

used to microerface es the The reset circuitry signals the microprocessor to begin the restart sequence. A reset signal, generated during power-up of the instrument, initializes the microprocessor from the power-down condition. The instrument does a RAM test and a ROM test at power-on.

Address Decoders

s that lapter,

U17 is a programmable array logic integrated circuit. Depending on the input levels to U17 it is used to enable the following integrated circuits or test points:

used to erface.

e, it is

U3 ROM U4 RAM
U39 Data Buffer U38 Data Buffer
U37 Data Buffer U36 Diagnostic S

U37 Data Buffer Test Point SAST2 U36 Diagnostic Switch Buffer

refore,

U17 is also used to enable address decoders U9-U11. U9-U11 do further decoding of the address lines to enable other integrated circuits.

pin 38 n clock ed.

rom a

comes

is con-

e data high, transssor is

Address Switch

Address switch S11 consists of seven miniature slide switches. It sets the HP-IB address of the Carrier Noise Test Set. The switches labeled A1 through A5 set the address in binary. A1 is the least significant bit. For the decimal equivalent of the binary setting, allowable addresses are 0-30. The HP-IB address is set to 6 when it is shipped from the factory. The switches labeled LO and TO set the instrument to listen only or talk only, respectively, when in the "1" position. These switches are factory set to "0".

HP-IB Address Buffer

U33 is a tri-state buffer. It is read by the microprocessor at power-up to determine the setting of the address switch.

SERVICE SHEET 5 (cont'd)

Diagnostic Switch and Diagnos

Diagnostic switch S2 consists of f the operation of the instrument u normal operation or it can be set analysis diagnostics. An interpredefined in the table below. Setting

	Switch					
	1	2	3	4		
Undefined	0	0	0	0		
RAM Test	1	0	0	0		
ROM Test	0	1	0	0		
Signature Ar	1	1	0	0		
Normal Oper	1	1	1	1		

The microprocessor reads the diag to determine whether or not diagn

TROUBLESHOOTING USING S

NOT

Run the following tests in t

Test Equipment

Signature Multimeter

Address Decoding Check

Purpose. To verify the microproc transfer that address to the selecte decoded at the chip.

Setup. Turn the Carrier Noise Tescover. Locate the A9 Microprocess that hold the board in place. The Aboard laying parallel to the bottom

Connect the signature analyzer Tir

- 1. START/ST/SP to SAST1 (A9TI
- 2. STOP/QUAL to SAST1 (A9TP4
- 3. CLOCK to SACLK (A9TP3)
- 4. GND to GND (A9TP1)

Set the signature analyzer controls

SHT. 30f1 SERVICE SHEET 5 (cont'd)

Diagnostic Switch and Diagnostic Switch Buffer

cess Memorymory for the cion. RAM U4 information.

Diagnostic switch S2 consists of four rocker switches which define the operation of the instrument upon power-up. S2 can be set for normal operation or it can be set to run RAM, ROM, or signature analysis diagnostics. An interpretation of the switch positions is defined in the table below. Settings not shown are undefined.

essor Assem-
ne clock is fed
goes to two
.38 (EXTAL)

suit that conon U6 pin 34 Set's digital

1 the restart f the instrun condition. wer-on.

epending on z integrated

uffer

U9-U11 do r integrated

switches. It he switches is the least ary setting. 6 when it is I TO set the n in the "1"

at power-up

	Switch						
4	3	2	1	Definition			
0	0	0	0	Undefined			
0	0	Q	1	RAM Test			
0	0	1	0	ROM Test			
0	o`	1	1	Signature Analysis Test			
1	1	1	1	Normal Operation			

The microprocessor reads the diagnostic switch buffer at power-up to determine whether or not diagnostics should be run.

TROUBLESHOOTING USING SIGNATURE ANALYSIS

NOTE

Run the following tests in the sequence listed.

Test Equipment

Signature Multimeter HP 5005B

Address Decoding Check

Purpose. To verify the microprocessor can generate an address, transfer that address to the selected chip and the correct address is decoded at the chip.

Setup. Turn the Carrier Noise Test Set off and remove the bottom cover. Locate the A9 Microprocessor Board. Remove the 3 screws that hold the board in place. The A9 assembly is the printed circuit board laying parallel to the bottom of the instrument.

Connect the signature analyzer Timing Pod as follows:

- 1. START/ST/SP to SAST1 (A9TP4)
- 2. STOP/QUAL to SAST1 (A9TP4)
- 3. CLOCK to SACLK (A9TP3)
- 4. GND to GND (A9TP1)

Set the signature analyzer controls as follows:

SERVICE SHEET 5 (cont'd)

1. Function: Signature 2. Polarity: Clock Start..... Stop

Connect a jumper cable between (A9TP1).

> The test setup conditio Check are the same for therefore signatures m all three service sheets.

Connect the signature analyze Table A-3 and verify the signat

Table A-3 Signatures ti

	Table A-3. Signatures					
	Pin	IJ4	υ5	U6	U9	
1	1	6F9A			P76	
	2	U759	–	-	1U5	
ľ	3	0356	6F9A	_	0350	
ı	4	IU5P	U759	l –	_	
١	5	P763	0356		l –	
1	6	8484	1U5P	0000		
ı	7	FFFF	P763	_	_	
	8	שששו	8484	טטטט	 	
1	9	_	FFFF	FFFF	l —	
ı	10	l –	טטטט	8484	_	
1	11	_	l —	P763		
ı	12	-	l —	1U5P	 	
İ	13	_		0356	UAH	
1	14	_	0000	U759	9668	
ı	15	l —	_	6F9A	1376	
l	16	_	_	7791	-	
İ	17		_	6321	_	
l	18	_	-	37C5	_	
l	19	37C5	_	6U28	-	
1	20	0000	2302	4FCA	_	
	21	0003	37C5	4868	_	
l	22	6321	_	9UP1	_	
l	23	7791	6U28	0002		
l	24	-	6321			
l	25		7791	_ i	_	
l	32	_	-	0003	_	

Turn the Carrier Noise Test Set

ROM Data Check

Purpose. To verify ROM operat ROM.

SERVICE SHEET 5 (cont'd)

SHT. 4 0 FT

1. Function: Signature	Normal
2. Polarity: Clock	Falling edge (2)
Start	Rising edge (1)
Stop	Rising edge (1)

Connect a jumper cable between NFREERUN (A9TP5) and GND (A9TP1).

NOTE

The test setup conditions for the Address Decoding Check are the same for Service Sheets 4,5, and 6, therefore signatures may be taken concurrently on all three service sheets.

Connect the signature analyzer's probe to the points indicated in Table A-3 and verify the signatures.

Table A-3. Signatures for Verifying Address Decoding

Pin	U4	U 5	U6	U9	U17	U18	Ų19	U33	U38
1	6F9A	_	_	P763	0003	_	0000	UAH6	-
2	บ 759		-	1U5₽	_	_	P763	_	_ '
8	0356	6F9A		0356	_	_	0003		_
4	1U5P	U759	_	_	-	_	8484	-	_
5	P763	0356	_	_	_	_		_	
6	8484	1U5P	0000	_	_	_	FFFF		_
7	FFFF	P763	_	_	0002		 		_
8	טטטטו	8484	טטטט	_	9UP1	_	טטטט	_	_
9	_	FFFF	FFFF	_	6U28	. —	-		
10	!	טטטט	8484	_ '	4868	_	1 —	_	_
11	– 1	_	P763	<u> </u>	4FCA	_	-	- 1	_
12	_	–	1U5P	-		_	טטטט	-	_
13	_		0356	UAH6	0000	0003	_	–	_
14	_ '	0000	U759	9668	_	_	FFFF	-	_
15	_	l —	6F9A	1376	2302	_	-	-	_
16	–	i	7791	—	546H	-	8484		_
17			6321		96FA	_	0003		_
18	l —		37C5	-	-	_	P 763	-	
19	37C5	! —	6U28	-		_ <u></u>	0000	UAH6	A4C6
20	0000	2302	4FCA	–	3838	l —	_	-	
21	0003	37C5	4868	–	7633	<u></u>	_	_	-
22	6321	-	9UP1	—	0000	-		-	<u> </u>
23	7791	6U28	0002	i –	A4C6		_	-	–
24	-	6321	-	—		-		-	
25	 	7791		-	-	-		-	-
32	_	-	0003		_		<u> </u>	<u> </u>	<u> </u>

Turn the Carrier Noise Test Set off.

ROM Data Check

Purpose. To verify ROM operation and the data contents stored in ROM.

SERVICE SHEET 5 (cont'd)

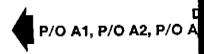
Connect the signature analyzer Timin

- 1. START/ST/SP to SAST1 (A9TP4)
- 2. STOP/QUAL to A9U4 pin 20
- 3. CLOCK to SACLK (A9TP3)
- 4. GND to GND (A9TP1)

Set the signature analyzer controls as

Function: Signature
 Polarity: Clock
Start

Start.....StopQual


Leave the jumper connected between GND (A9TP1). Turn the Carrier Noise

Connect the signature analyzer's prol Table A-4 and verify the signatures.

Table A-4. Signatures for Verifying ROM (and Data Stored in ROM

Pin	U5	U6	บ 37
2	P254	_	726U
3	FF4F	<u> </u>	5A48
4	4PCC	_	7HUP
5	A7A2	_	AC41
1 6	108P		8C84
7	5342	_	8C22
8	1100	052 A	42PU
9	0108	0108	1H6H
10	052A	1100	_
11	726U	5342	
12	5A48	108P	—
13	7HUP	A7A2	-
14		4PCC	
15	AC41	FF4F	
16	8C84	5HC4	
17	8C22	0P0P	i –
18	42PU	0F62	
19	1H6H	H6AA	<u> </u>
20	–	P254	ļ
21	0F62	–	
23	H6AA		-
24	0P0P		i –
2 5	5HC4		

Turn the Carrier Noise Test Set off. Dithe jumper.

े A-10

et for nature ons is

efine

er-up

5005B

dress, ess is

ottom crews ircuit Connect the signature analyzer Timing Pod as follows:

- 1. START/ST/SP to SAST1 (A9TP4)
- 2. STOP/QUAL to A9U4 pin 20
- 3. CLOCK to SACLK (A9TP3)
- 4. GND to GND (A9TP1)

Set the signature analyzer controls as follows:

1. Function: Signature	QUAL
2. Polarity: Clock	. Falling edge (2)
Start	Rising edge (1)
Stop	Rising edge (1)
Qual	Lo (2)


Leave the jumper connected between 'NFREERUN' (A9TP5) and GND (A9TP1). Turn the Carrier Noise Test Set on.

Connect the signature analyzer's probe to the points indicated in Table A-4 and verify the signatures.

Table A-4. Signatures for Verifying ROM Operation and Data Stored in ROM

Pin	U5	U6	U37	U38
2	P254	_	726U	726U
3	FF4F	_	5 A 48	5A48
4	4PCC	_	7HUP	7HUP
5	A7A2	_	AC41	AC41
6	108P		8C84	8C84
7	5342		8C22	8C22
8	1100	052A	42PU	42PU
9	0108	0108	1H6H	1H6H
10	052A	1100	_	_
11	726U	5342		1H6H
12	5A48	108P	_	42PU
13	7HUP	A7A2		8C22
14		4PCC	–	8C84
15	AC41	FF4F		AC41
16	8C84	5HC4	—	7HUP
17	8C22	OPOP	_	5 A 48
18	42PU	0F62		726U
19	1H6H	H6AA	_	_
20		P254	_	–
21	0F62	***	_	-
23	H6AA	–	-	-
24	OPOP	-	–	-
25	5HC4	_	-	

Turn the Carrier Noise Test Set off. Disconnect the Timing Pod and the jumper.

Appendix A

SERVICE SHEET 5 (cont'd)

ROM Operation Check

Purpose. Verify that the microprothe data stored in ROM and the code.

Setup. Set the diagnostic switch A of A9 assembly) to the ROM test below.

ROM T
1

Locate the 8 Red LEDs between U2 individual LEDs are numbered lbeing the LED closest to the hinge microprocessor board assembly.

Turn the Carrier Noise Test Set instrument.

Check the pattern of the flashing ROM passes the test.

ROM Passes Test — D5 remains other LEDs flash on and off. This address and data busses between microprocessor are working.

ROM Fails Test — D5 remains on a LEDs remain off. This signifies tand data busses have a problem. circuits.

Turn the Carrier Noise Test Set of

RAM Operation Check

Purpose. To verify that the RAM

Setup. Set the diagnostic switch A test position shown below.

Diagnostic Switch S2	RAM T
1	
2	!
3	
4	

Turn the Carrier Noise Test Set instrument.

A-10

DATA INPUT CIRCUITS

SERVICE SHEET 5 (cont'd) SHT 6 of 7

ROM Operation Check

Purpose. Verify that the microprocessor can read the data stored in ROM and then execute that code.

Setup. Set the diagnostic switch A9S2 (right side of A9 assembly) to the ROM test position shown below.

Diagnostic Switch S2	ROM Test Logic Level
1	0
2	1
8	0
4	0

Locate the 8 Red LEDs between U28 and U29. The individual LEDs are numbered D0-D7 with D7 being the LED closest to the hinged portion of the microprocessor board assembly.

Turn the Carrier Noise Test Set on to reset the instrument.

Check the pattern of the flashing LEDs to see if ROM passes the test.

ROM Passes Test — D5 remains on and all the other LEDs flash on and off. This verifies that the address and data busses between ROM and the microprocessor are working.

ROM Fails Test — D5 remains on and all the other LEDs remain off. This signifies that the address and data busses have a problem. Check for short circuits.

Turn the Carrier Noise Test Set off.

RAM Operation Check

Purpose. To verify that the RAM is operational.

Setup. Set the diagnostic switch A9S2 to the RAM test position shown below.

Diagnostic Switch S2	RAM Test Logic Leve			
1 2	1 0			
3 4	0			

Turn the Carrier Noise Test Set on to reset the instrument.

Check the pattern of the flashing LEDs to see if RAM passes the test.

RAM Passes Test — D4 is on and D0-D3 count, all LEDs turn on then the counting sequence repeats. This verifies that the microprocessor can access RAM properly.

RAM Fails Test — D4 is on but D0-D3 do not go through counting sequence. This shows that the RAM or the control lines to the RAM may be faulty.

Turn the Carrier Noise Test Set off.

Signature Analysis Test — Microprocessor and Data Transfer

Purpose. The Microprocessor runs a program to verify the functional operation of ROM, RAM, and the data buffers.

Connect the signature analyzer Timing Pod as follows:

- 1. START/ST/SP to SAST2 (A9TP6)
- 2. STOP/QUAL to SAST2 (A9TP6)
- 3. CLOCK to SACLK (A9TP3)
- 4. GND to GND (A9TP1)

Set the signature analyzer controls as follows:

1. Function: Signature	Normal
2. Polarity: Clock	Falling edge (2)
Start	Rising edge (1)
Stop	Falling edge (2)

Set the Diagnostic Switch A9S2 as follows:

Diagnostic Switch S2	Signature Analysis Test Logic Level		
I	1		
2	1		
3	0		
4	0		

Turn the Carrier Noise Test Set on to reset the diagnostic switch.

Connect the signature analyzer's probe to the points indicated in Table A-5 and verify the signatures.

NOTE

The test setup conditions for the Signature Analysis Test are the same for Service Sheets 4, 5 and 6, therefore signatures may be taken concurrently on all three service sheets. DATA INPUT CIRCUITS

SERVICE SHEET 5 (cont'd)

Table A-5. Signatures for Verifying Microprocessor, ROM, RAM and Data Buffer Operation

Pin	IJ4	U5	U6	U8	U9	U17	U18	V19	U37	U38
1	F5AH	_	_		56ÇC	UHU1	_	0000	UHU1	UHU1
2	6C04	บ9บุ8	 	l –	F351	_	_	56CC	1CP1	P8CF
3	034P	F5AH] _	l –	034P	_	_	UHU1	0ŲP9	4771
4	F351	6C04	l <i>–</i>	<u> </u>	3A56	_	_	H083	6800	AF7U
5	56CC	034P	-	_	_	1HCU	_	–	F109	6U22
6	H083	F351	0000	_	–	1HCU	_	675A	43P0	068C
7	675A	56CC	_	_		F69F	-	_	775 H	P66C
8	U46P	H083	U46P	_	_	4732	P04P	U46P	CA95	866F
9	P8CF	675A	675A	–	–	7989	_	–	U8H3	F3F8
10	4771	U46P	H083	_	_	4A99	UHU1	 	_	
11	AF7U	P8CF	56CC	_	. –	U9U8	UHU1	_	U8H3	U8H3
12	–	4771	F351	P04P	l –	_	_	U46P	CA95	CA95
13	6U22	AF7U	034P	UHU1	1HCU	0000	1HCU		775H	775H
14	068C	_	6C04	_	3361	_	–	675A	43P0	43P0
15	P66C	6U22	F5AH	_	6978	2PC1	_		F109	F109
16	866F	068C	PUFP	_		1HCU	_	H083	6800	6800
17	F3F8	P66C	U713	_	_	1HCU	_	UHU1	0UP9	0UP9
18	4Ç46	866F	411 F	_	_	_	_	56CC	1CP1	1CP1
19	411F	F3F8	7989	_	_	_		0000	_	_
20	P04P	2PC1	U9U8	_	l –	4C46	_	_	_	_
21	UHU1	_	4A99	_	_	3A56	******		_	_
22	Ų713	_	4732		_	1HCU	_	_	_	_
23	PUFP	_	F69F	_	_	FPOF		–	_	_
24	_	—	U8H3	-	_	_	_	_	_	
25		_	CA95	_	_	_		_	_	_
26		_	775H		_	_	_	_		-
27	-	_	43P0	_	_	_	_	_	–	
28	-		F109	_	_	_		_	_	_
29		_	6800	_	_	_	_ :	_		_
30	-	_	0UP9	_	_	_	_	_	_	-
31		_	1CP1	_	_	_	_	_	_	_
32		_	UHU1	_					<u></u>	

 $\label{thm:connect} Turn\,the\,Carrier\,Noise\,Test\,Set\,off\,and\,disconnect\\ the\,Timing\,Pod.$

Reset the Diagnostic Switch A9S2 to the Normal Operation position shown below:

Diagnostic Switch S2	Normal Operation Logic Level				
1	1				
2	1				
3	1				
4	1				

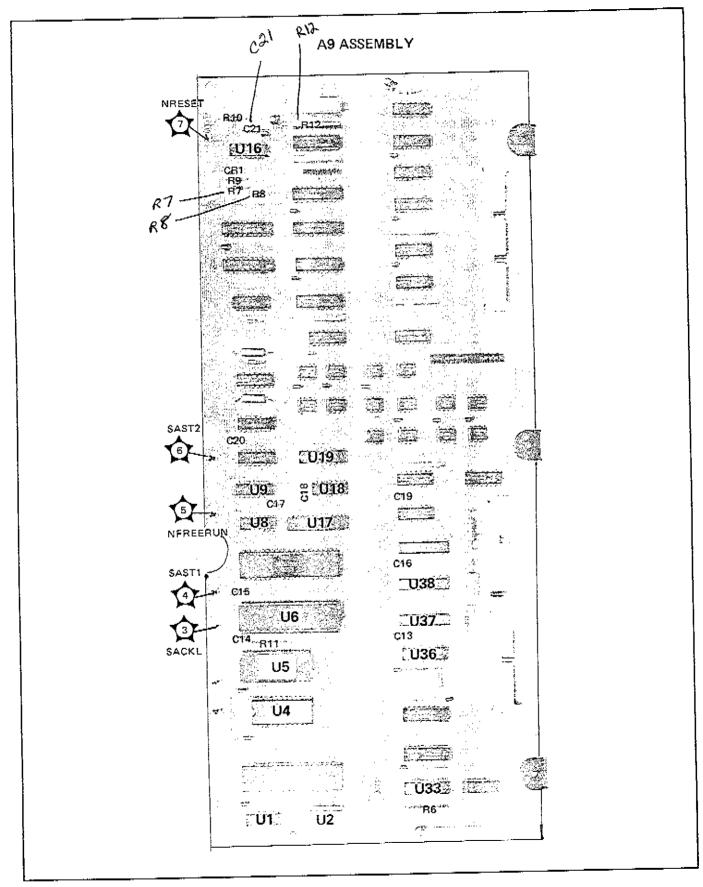
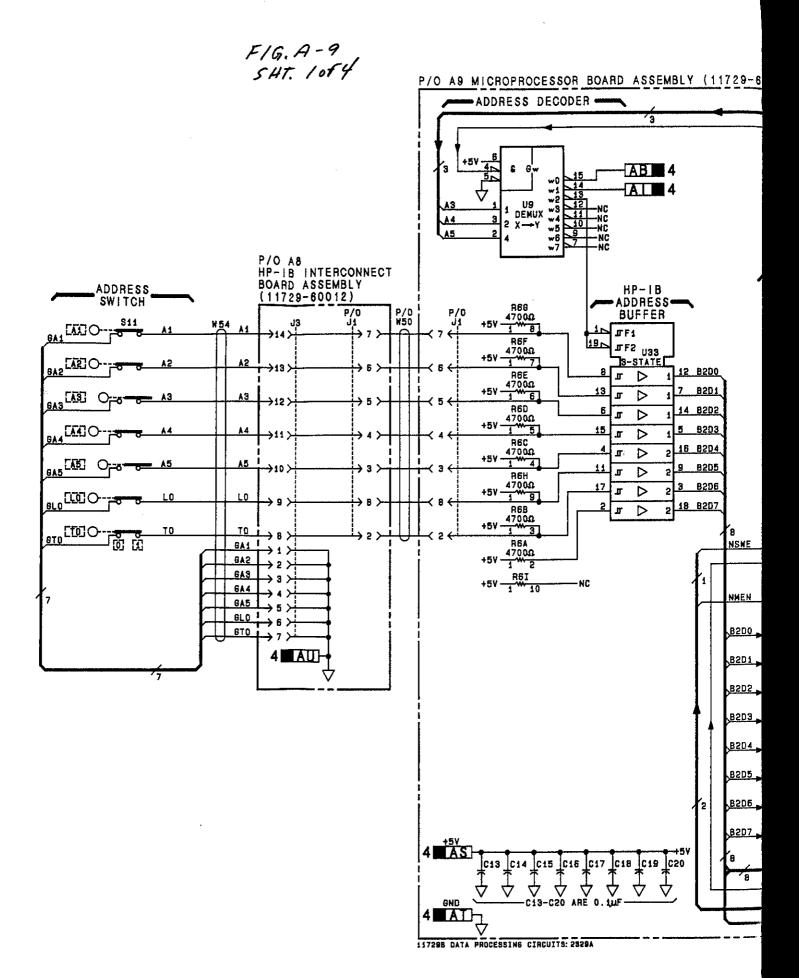
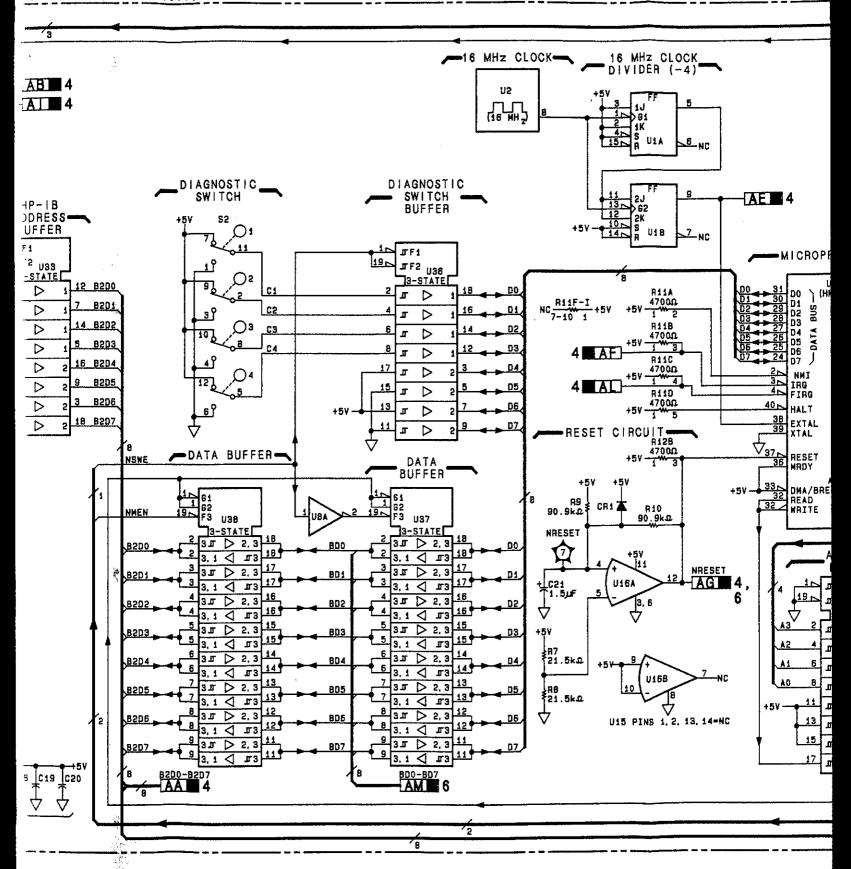




Figure A-8. Microprocessor Board Assembly Component Locations

1887

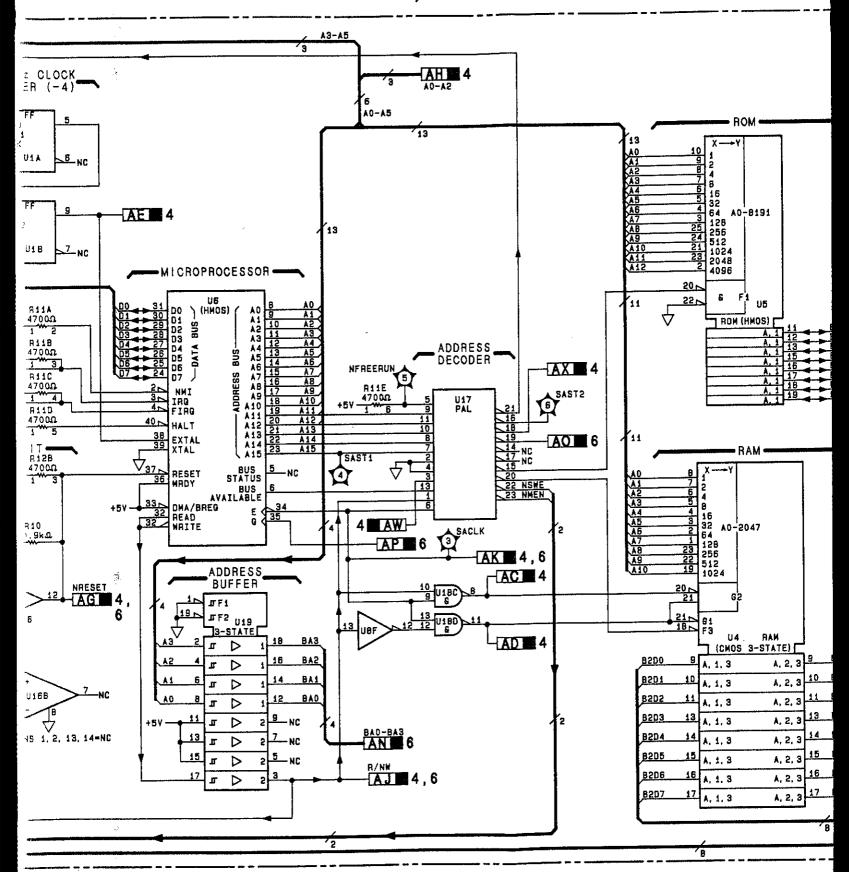


Figure A-9. Data

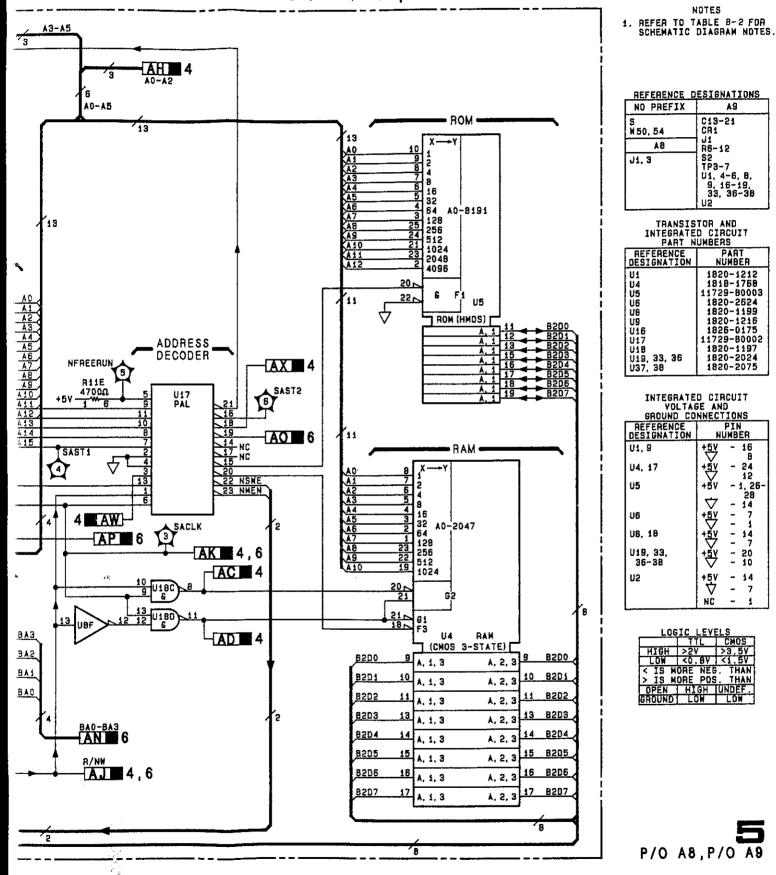


Figure A-9. Data Processing Circuits Schematic Diagram

Service Sheet 6 - 5HT 1 of 7

Replace the text for Service Sheet 6 with the following text and replace the component locator photograph and schematic with Figures A-10 and A-11.

SERVICE SHEET 6

PRINCIPLES OF OPERATION

General

The switch and LED control circuits perform the following functions:

- a. decode addresses of latches,
- b. load data from data bus into latches, and
- c. drive front panel LEDs.

Address Decoders

Address decoders U10 and U11 decode the LED driver latches.

Switch Driver Enable Latch

The switch driver enable latches prevent several relays from changing simultaneously at power-on. The ± 24 V supply is designed to switch only a few relays at once.

At power-up, the switch driver enable latches U14 and U15 are set to 0, thus disabling the switch relay drivers. Even though the switch relay driver latches can power-up in random condition, the switch relay drivers are forced off because of these secondary latches. The microprocessor then sets the switch relay driver latches to some orderly condition. After that is done, the microprocessor enables the switch relay drivers one at a time. Once all the relay drivers are turned on, the enable latches are left alone. They are left in a state so that the relay drivers can respond to the other control lines.

Switch Relay Driver Latches

Latches U26 and U27 store data for the relays. These latches turn on and off in response to inputs from front panel keys or HP-IB.

Switch Relay Drivers

These drivers generate the current sinks to activate the relays in the microwave switches (see Service Sheet 1).

Diagnostic LED Latch

U28 drives DS1 and DS2. The individual LEDs within DS1 and DS2 are numbered D0-D7. D7 is closest to the hinged portion of the Microprocessor Board Assembly. The LEDs that correspond to the four most significant bits (D4-D7) indicate the setting of the diagnostic switch. Refer to Principles of Operation on Service Sheet 5 for an explanation of the diagnostic switch. An interpretation of the LEDs is shown in the following table.

Dlagnostic	Normal Indication
RAM Test	D4 is on and D0-D3 count, then all the LEDs turn on and the sequence repeats.
ROM Test	D5 is on and all others flash.
Signature Analysis	D4 and D5 are on and all others are dim.
Self Test (power-up)	ROM-D5 is on then all others turn on. RAM-D4 is on then all others turn on. Option switch-D7 is on and the setting of the Option switch i shown in binary.

SERVICE SHEET 6 (conf

Multiplex Switch Drivers

These circuits are not us instrument.

Option Switch

The option switch is set at of the options that are in th (in binary) the number of switch indicates whether system can handle up to 11 other than 1 through 11 (d switch is set to band 1. Ei that can be installed in the tion of the instrument is option switch must be cl number of bands. You ca HP-IB) as many bands as the switch is set for 6 ban will never get the seventh Adjustment in Section V Switch settings.

LED Driver/Latches

These latches drive the Liplay Board assembly.

TROUBLESHOOTING 4

Run the following

Test Equipment

Signature Multimeter ...

Address Decoding Ched

Purpose. To verify the r transfer that address to the decoded at the chip.

Setup. Turn the Carrier I cover. Locate the A9 Mic that hold the board in pla board laying parallel to t

Connect the signature an

- 1. START/ST/SP to SAS
- 2. STOP/QUAL to SAST

DATA PROC. CIRCUITS

SERVICE SHEET 6 (cont'd) - SHT 20F7

Multiplex Switch Drivers and Multiplex Sense Detect Circuit

These circuits are not used in the current configuration of the instrument.

Option Switch

ce the com-

g simultan-

lays at once.

t to 0. thus

latches can

because of

elav driver

enables the

ned on, the

drivers can

1 and off in

microwave

e numbered d Assembly.

indicate the

Ds is shown

n and the

The option switch is set at the factory to inform the microprocessor of the options that are in the instrument. Switches 1 through 4 define (in binary) the number of bands that are in the system. The fifth switch indicates whether or not the AM option is installed. The system can handle up to 11 bands. If the switch is set to any number other than 1 through 11 (decimal), the microprocessor assumes the switch is set to band 1. Eight (8) bands are the maximum number that can be installed in the Carrier Noise Test Set. If the configuration of the instrument is ever changed to add or delete a filter, the option switch must be changed so that it shows the maximum number of bands. You can only call up (from the front panel or HP-IB) as many bands as the switch is set to allow. For example, if the switch is set for 6 bands and you really have seven bands, you will never get the seventh band. Refer to the Filter Option Switch Adjustment in Section V for a complete description of the Option Switch settings.

LED Driver/Latches

These latches drive the LEDs on the A2 Front Panel Key and Display Board assembly.

TROUBLESHOOTING USING SIGNATURE ANALYSIS

NOTE

Run the following test in the sequence listed.

Test Equipment

Address Decoding Check (using a falling edge clock trigger)

Purpose. To verify the microprocessor can generate an address transfer that address to the selected chip and the correct address is decoded at the chip.

Setup. Turn the Carrier Noise Test Set off and remove the bottom cover. Locate the A9 Microprocessor Board. Remove the 3 screws that hold the board in place. The A9 assembly is the printed circuit board laying parallel to the bottom of the instrument.

Connect the signature analyzer Timing Pod as follows:

- 1. START/ST/SP to SAST1 (A9TP4)
- 2. STOP/QUAL to SAST1 (A9TP4)

n switch is

SERVICE SHEET 6 (cont'd)

- 3. CLOCK to SACLK (A9TP3)
- 4. GND to GND (A9TP1)

Set the signature analyzer contro

Start.....Stop

Connect a jumper cable between (A9TP1).

Connect the signature analyzer Table A-6 and verify the signature

N

The test setup conditions Check are the same for therefore signatures may all three service sheets.

Table A-6. Signatures Verifying A Clock

	Pin	U10	Ull	814	Ī
	1	บบบบ	บบบบ		
i	2	FFFF	FFFF	_	
	3	8484	8484	_	
	4	CFHU	 	_	
1	5	P763	0003	-	
	10	AC67	0003		
	11	AH92	0003	0003	0
	12	C645	0003		
	13	 	0003	_	İ
	14	6464	0003	_	
	15	919F	0003		

Address Decoding Check Usin

Purpose. To verify the address dearly memory cycle before the d

Setup. Change the controls on t

Polarity: Clock

Connect the signature analyzer Table A-7 and verify the signatu

Turn the Carrier Noise Test Set the jumper.

SERVICE SHEET 6 (cont'd) - 5 HT. 3 of 7

€ Circuit

ion of the

coprocessor igh 4 define i. The fifth talled. The ny number

sumes the

m number configura-

filter, the

maximum it panel or

example, if

bands, you

on Switch

he Option

v and Dis-

SIS

3. CLOCK to SACLK (A9TP3)

4. GND to GND (A9TP1)

Set the signature analyzer controls as follows:

1.	Function: Signature	Normal
2.	Polarity: Clock	,
	Start	Rising edge (1)
	Stop	Rising edge (1)

Connect a jumper cable between NFREERUN (A9TP5) and GND (A9TP1).

Connect the signature analyzer's probe to the points indicated in Table A-6 and verify the signatures.

NOTE

The test setup conditions for the Address Decoding Check are the same for Service Sheets 4, 5 and 6, therefore signatures may be taken concurrently on all three service sheets.

Table A-6. Signatures Verifying Address Decoding Using a Falling Edge Clock Trigger

Pin	U10	Ų11	U14	U15	U48	U 4 9	U50	U51
1	טטטט	ບບບບ		_	0003	0003	0003	0003
2	FFFF	FFFF	****			_		–
3	8484	8484	_	—	_	_	i —	<u> </u>
4	CFHU	_	_	_		—		—
5	P763	0003	_	 	_	—	_	 -
10	AC67	0003	_	 	_	—	 	-
11	AH92	0003	0003	0003		—	—	-
12	C645	0003	-	<u> </u>	—	-	 	-
13	-	0003	_	—	—	_	—	-
14	6464	0003	_	_		l —	 -	-
15	919F	0003	_	—	-		1 —	

trigger)

n address address is

he bottom e 3 screws ted circuit

Address Decoding Check Using a Rising Edge Clock Trigger

Purpose. To verify the address decoding of those chips that have an early memory cycle before the data is transfered.

Setup. Change the controls on the signature analyzer as follows:

Polarity: Clock Rising Edge (1)

Connect the signature analyzer's probe to the points indicated in Table A-7 and verify the signatures.

Turn the Carrier Noise Test Set off. Disconnect the Timing Pod and the jumper.

SERVICE SHEET 6 (cont'd)

Table A-7. Signature: Decoding Using a Risin

Pin	UII	U48	
1	טטטט	Н3Н9	
2	FFFF	_	
3	8484	_	
5	0000	–	
10	9Н3Р		
11	74U5	_ _	
12	Н3Н9	–	l
13	4U69	l —	
14	3 HA 8	-	ļ
15	U6AP	_	

ROM Operation Check

Purpose. Verify that the micropro ROM and then execute that code.

Setup. Set the diagnostic switch A the ROM test position shown belo

Diagnostic Switch S2	RE
1	
2	
3	
4	

Locate the 8 Red LEDs between U are numbered D0-D7 with D7 bei portion of the microprocessor box

Turn the Carrier Noise Test Set d

Check the pattern of the flashing

ROM Passes Test — D5 remains of and off. This verifies that the a ROM and the microprocessor are

ROM Fails Test — D5 remains on This signifies that the address a Check for short circuits.

Turn the Carrier Noise Test Set of

RAM Operation Check

Purpose. To verify that the RAM

Setup. Set the diagnostic switch shown on the next panel.

SERVICE SHEET 6 (cont'd) - SHT: 4 of 7

Table A-7. Signatures Verifying Address Decoding Using a Rising Edge Clock Trigger

Pin	UIT	U48	U 4 9	U5 0	U51
1	טטטט	нзн9	U6AP	4U69	3 HA 8
2	FFFF	_	–	_	
3	8484	_	<u> </u>		
5	0000		l <i>–</i>		–
10	9H3P		_	_	
11	74U5		_	—	l —
12	Н3Н9	_		—	
13	4U69	_	-	_	_
14	3HA8	—	-	_	
15	U6AP				

ROM Operation Check

Purpose. Verify that the microprocessor can read the data stored in ROM and then execute that code.

Setup. Set the diagnostic switch A9S2 (right side of A9 assembly) to the ROM test position shown below.

Diagnostic Switch S2	ROM Test Logic Level
1	0
2	1
8	0
4	0

Locate the 8 Red LEDs between U28 and U29. The individual LEDs are numbered D0-D7 with D7 being the LED closest to the hinged portion of the microprocessor board assembly.

Turn the Carrier Noise Test Set on to reset the instrument.

Check the pattern of the flashing LEDs to see if ROM passes the test.

ROM Passes Test — D5 remains on and all the other LEDs flash on and off. This verifies that the address and data busses between ROM and the microprocessor are working.

ROM Fails Test — D5 remains on and all the other LEDs remain off. This signifies that the address and data busses have a problem. Check for short circuits.

Turn the Carrier Noise Test Set off.

RAM Operation Check

Purpose. To verify that the RAM is operational.

Setup. Set the diagnostic switch A9S2 to the RAM test position shown on the next panel.

SERVICE SHEET 6 (cont'd)

RAM Test Logic Leve
1
0
0
0

Turn the Carrier Noise Test Set on to reset the:

Check the pattern of the flashing LEDs to see if I

RAM Passes Test — D4 is on and D0-D3 count, al the counting sequence repeats. This verifies that can access RAM properly.

RAM Fails Test — D4 is on but D0-D3 do not g sequence. This shows that the RAM or the cont may be faulty.

Turn the Carrier Noise Test Set off.

Signature Analysis Test — Microprocessor a

Purpose. The Microprocessor runs a program to sion of data from the Microprocessor to the outption of the relay circuitry is tested.

Connect the signature analyzer Timing Pod as

- 1. START/ST/SP to SAST2 (A9TP6)
- 2. STOP/QUAL to SAST2 (A9TP6)
- 3. CLOCK to SACLK (A9TP3)
- 4. GND to GND (A9TP1)

Set the signature analyzer controls as follows:

Set the Diagnostic Switch A9S2 as follows:

Diagnostic Switch S2	Signature Analy
1	. .
2	
3	
4	

Turn the Carrier Noise Test Set on to reset the

SERVICE SHEET 6 (cont'd) - SHT. 5 of 7

Diagnostic Switch S2	RAM Test Logic Level
1	1
2	0
3	0
4	0

Turn the Carrier Noise Test Set on to reset the instrument.

Check the pattern of the flashing LEDs to see if RAM passes the test.

RAM Passes Test — D4 is on and D0-D3 count, all LEDs turn on then the counting sequence repeats. This verifies that the microprocessor can access RAM properly.

RAM Fails Test — D4 is on but D0-D3 do not go through counting sequence. This shows that the RAM or the control lines to the RAM may be faulty.

Turn the Carrier Noise Test Set off.

Signature Analysis Test — Microprocessor and Relay Circuitry

Purpose. The Microprocessor runs a program to verify the transmission of data from the Microprocessor to the output ports. The operation of the relay circuitry is tested.

Connect the signature analyzer Timing Pod as follows:

- 1. START/ST/SP to SAST2 (A9TP6)
- 2. STOP/QUAL to SAST2 (A9TP6)
- 3. CLOCK to SACLK (A9TP3)
- 4. GND to GND (A9TP1)


Set the signature analyzer controls as follows:

1.	Function: Signature		Normal
2.	Polarity: Clock	Falling	edge (2)
	Start	Rising	edge (1)
	Ston	Falling	edge(2)

Set the Diagnostic Switch A9S2 as follows:

Blagnostic Switch S2	Signature Analysis Test Logic Level
1	1
2	1
3	0
4	0

Turn the Carrier Noise Test Set on to reset the diagnostic switch.

SERVICE SHEET 6 (cont')

Connect the signature anal signatures.

The test setup condi-Service Sheets 4,5, a all three service she

Table A-8. Signatures V

Pin	U10	814
1	U46P	_
2	675A	90CF
8	H083	9130
4	U585	7097
5	56CC	HU34
6	_	581C
7	–	8A90
8	<u> </u>	HPCI
9	–	F471
10	1HCU	
11	H344	_
12	1HCU	FFC2
13	<u> </u>	HUH
14	79C0	586A
15	3819	P92F
16	-	2183
17	_	PPF7
18	<u> </u>	1P1U
19		1953

in

ΞO

Эs

ed

st.

on en

ff.

DATA PROC. CIRCUITS

SERVICE SHEET 6 (cont'd) - SHT. 6 of 8

Connect the signature analyzer's probe to the points indicated in Table A-8 and verify the signatures.

NOTE

The test setup conditions for the Signature Analysis Test are the same for Service Sheets 4,5, and 6, therefore signatures may be taken concurrently on all three service sheets.

Table A-8. Signatures Verifying Microprocessor and Relay Circultry Operation (1 of 3)

Pin	U10	U14	U15	V20	U21	U22	U23	U24
1	U46P		_	2F86	HP61	H10U	4H18	H10U
2	675A	90CF	8P37	_		_		FFCO
3	H083	9130	9130	_	l –		–	2F86
4	U585	7097	7097	_		_		3139
5	56CC	HU34	3964	_	l –	_		28HI
6		581C	1758	3139	A55P	FFC0	F5H3	356P
7	_	8A90	8A90	_	l —	_	_	
8	_	HPCP	HPCP		l –	i –	M-MITTER.	C074
9	_	F471	F76F	–	l –	—	–	AHFC
10	1HCU	_	l –	_		_	–	3HF8
11	H344				l –			2077
12	1HCU	FFC2	6C97	_	l –	_	l –	F206
13		HUH9	HUH9		l –	_		HUC9
14	79C0	586A	586A	_	l –	_	 	
15	3819	P92F	C0C7	_	l —	_	_	–
16		2183	P409		–	_	<u> </u>	-
17	-	PPF7	PPF7	_	_	_	–	_
18	_	1P1U	1P1U	_	_	_	_	
19		1958	3C32	_	l —	_		_

DATA PROC. CIRCUITS

SERVICE SHEET 6 (cont'd) - SHF 7047

Table A-8. Signatures Verifying Microprocessor and Relay Circuitry Operation (2 of 3)

Pin	U26	U27	U28	U30	U31	U32	U39	U42
1	H344	3819	79C0	2 8H 1	HUC9	2077	UHU1	AHFC
2	UF5F	673F	_	_		_	9130	
3	9130	9130	9130		l –	_	7097	_
4	8A90	8 A9 0	8 A9 0	_	<u> </u>	_	8A90	–
5	F4U9	28H1	_	<u> </u>	_	-	HPCP	
6	HP61	2F86	-	356P	F206	3HF8	HUH9	C074
7	HUH9	HUH9	HUH9	_	l —	_	586A	–
8	PPF7	PPF7	PPF7	_	<u> </u>	 	PPF7	–
9	4H18	H10U	_	<u> </u>	–	_	1P1U	<u> </u>
11	l –	_	_		l –	–	U8H3	–
12	F5H3	8494			l –	_	CA95	–
13	1P1U	1P1U	1P1U	_	<u> </u>	_	775 H	-
14	586A	586A	586A	_		 	43P0	-
15	A55P	HUC9		<u> </u>	<u> </u>	_	F109	i —
1 6	09AA	2077	_	–		-	6800	_
17	HPCP	HPCP	HPCP		–	–	OUP9	-
18	7097	7097	7097	_	 	-	1CP1	
19	5C41	AHFC	-	_	<u> </u>	_	TJ585	_

Table A-8. Signatures Verifying Microprocessor and Relay Circuitry Operation (3 of 3)

Pin	U43	U 44	U45	U48	U49	U50	U51	U54	U55	U56	U57
1	UF5F	8494	_	_		_		09AA	F4U9	673F	5C41
2	_		<u> </u>	9130	9130	9130	9130	_			_
3	l —		09.A.A	_	_	<u> </u>	_	_	<u> </u>	_	<u> </u>
4	_	! —	1415	7097	7097	7097	7097	_	_	_	–
5	_	<u> </u>	F4U9	l —	_	_	—	_	<u> </u>	i —	
6	P1P3	992C	H946	8A90	8A90	8 A 90	8A90	1415	H946	7A83	46UP
8	_	_	46UP			_		<u> </u>	l –		_
10	 	_	7A83	HPCP	HPCP	HPÇP	HPCP	_			
11	_	-	673F	i –	-		_			–	<u> </u>
12	-	l —	992C	HUH9	HUH9	HUH9	HUH9	_	<u> </u>	<u> </u>	-
13	1 —	_	8494	-		\ —	_	 	-	–	-
14	_	_	l —	586A	586A	586A	586A	-	_	-	—
		ł		1	1	I			1	l	4

Turn the Carrier Noise Test Set off. Disconnect the Timing Pod.

Reset the Diagnostic Switch S2 to the normal operation position shown as follows:

Diagnostic Switch S2	Normal Operation Logic Level
1	1
2	1
3	1
4	1

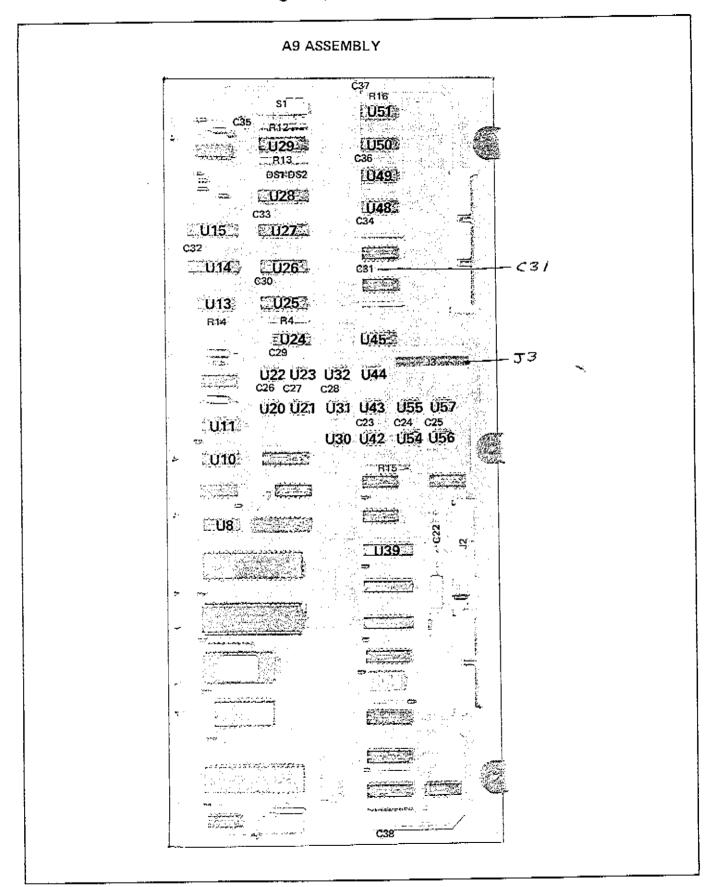
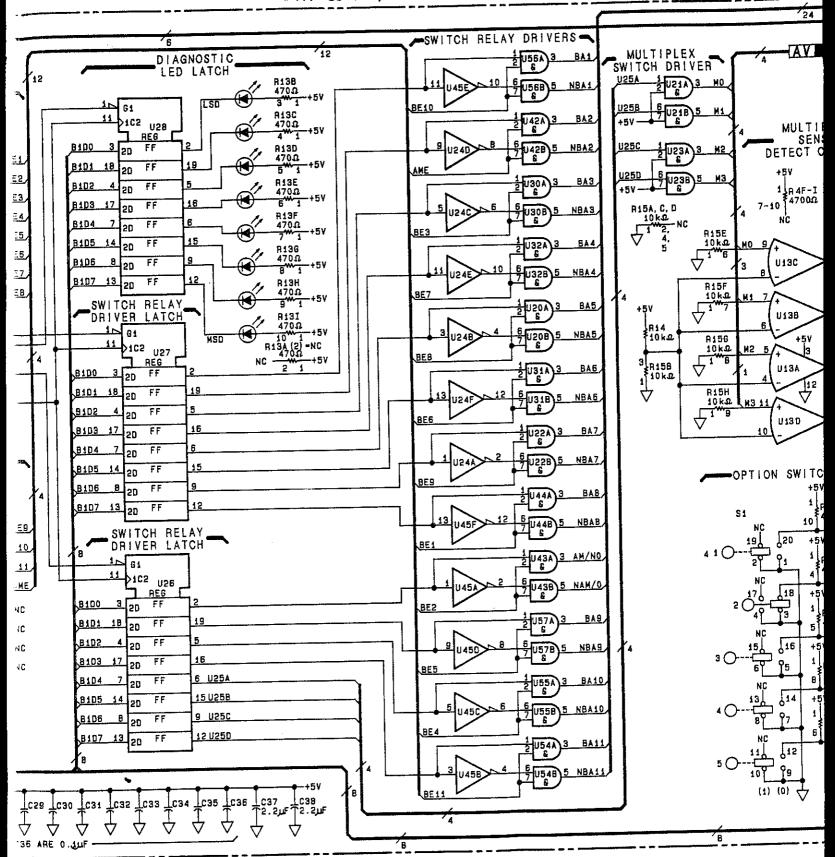
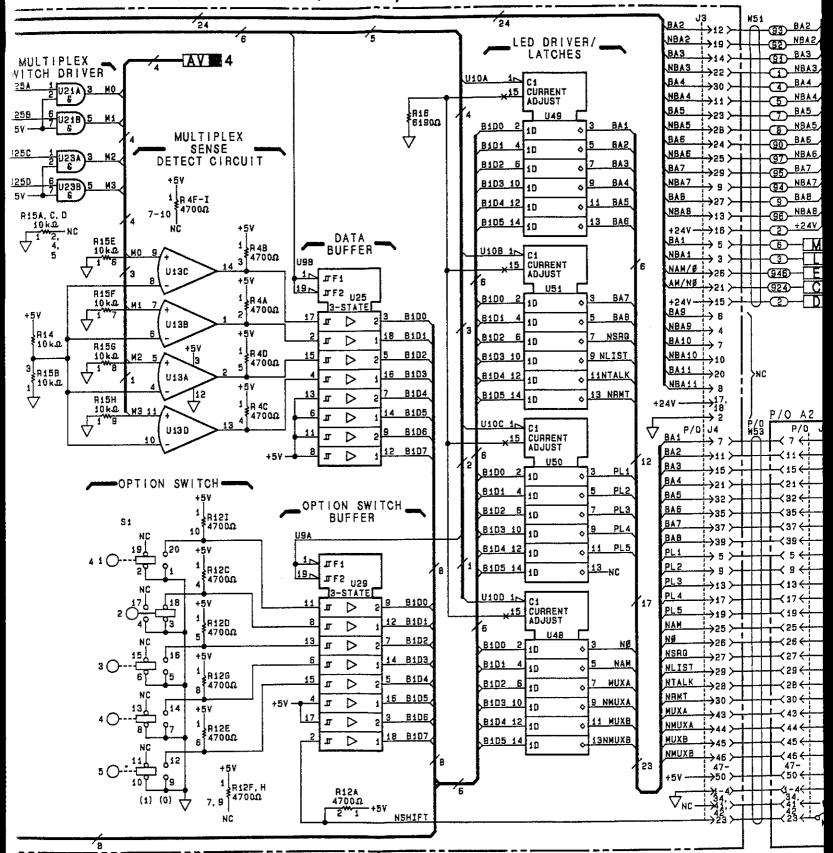




Figure A-10. Microprocessor Board Assembly Component Locations

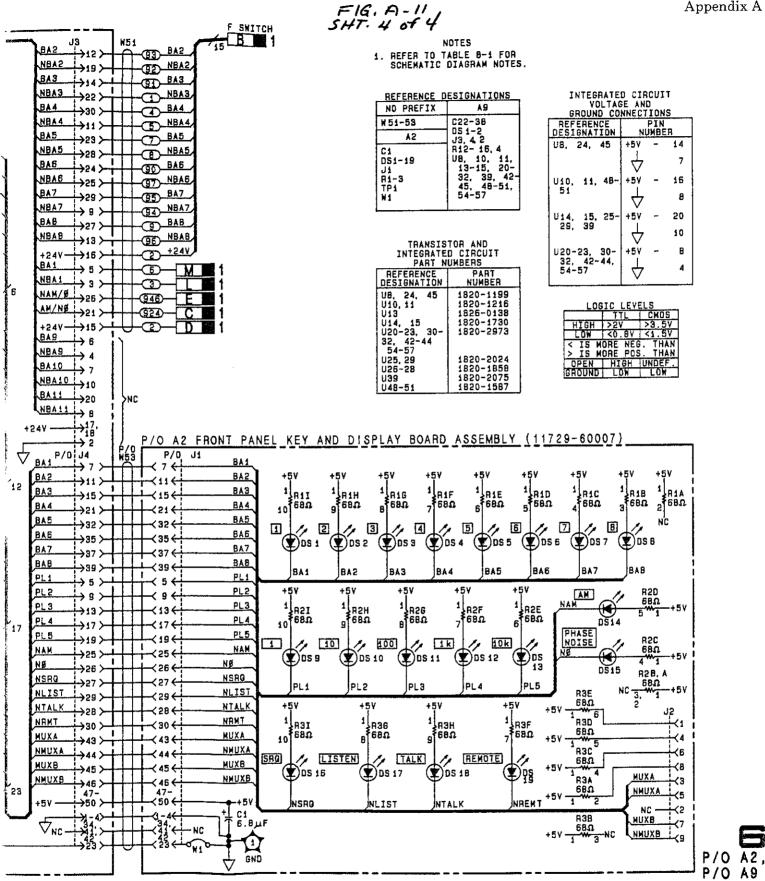
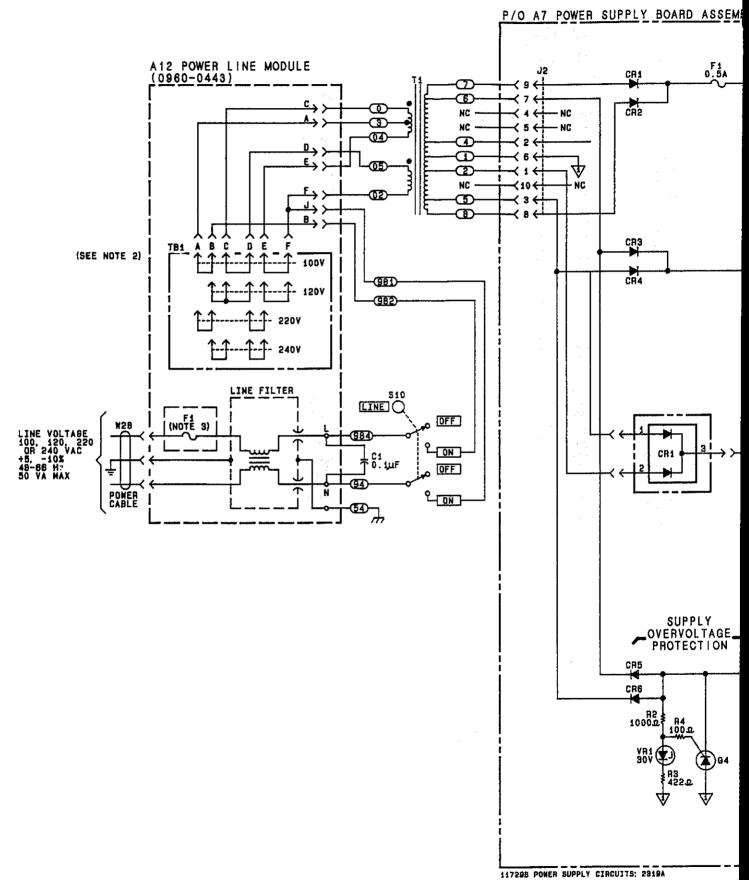



Figure A-11. Switch and LED Control Circuits Schematic Diagram

FIG.A-12 SHT 10f3

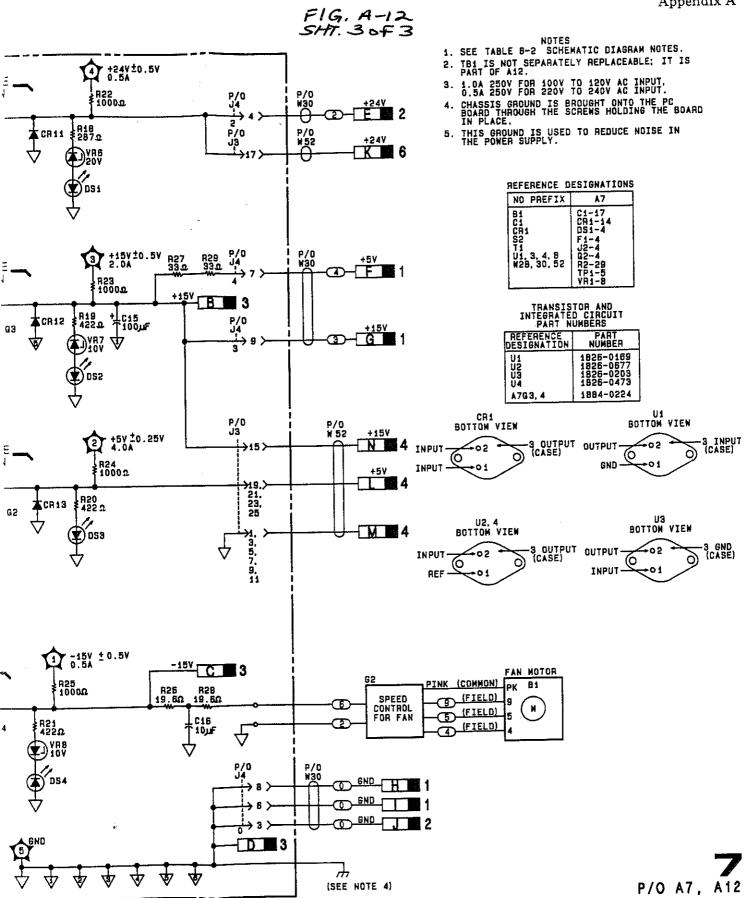


Figure A-12. Power Supply Circuits Schematic Diagram

APPENDIX B

Options Used To Order HP Low Noise Down Converters

The following discussion describes the H and K options that were used for ordering the HP Low Noise Down Converter.

The H option indicates the number of bands (switches) that are installed.

H01 — Two band operation Option H01 has band K01 and one of the other bands (K03 through K27) installed. With option H01 one filter is installed; band K01 does not require a filter.

H02 — Two band operation Option H02 has two bands of K03 through K27 installed. Band K01 is not available with option H02. With this option two filters are installed.

H03 — Three band operation

H04 — Four band operation

H05 — Five band operation

H06 — Six band operation

H07 — Seven band operation

H08 - Eight band operation

For options H03 through H08, the number in the option may or may not indicate the number of filters that are installed. The difference is caused by the fact that band K01 does not require a filter.

The K option indicates which bands are installed.

K Option	Harmonic of 640 MHz	Center Frequency GHz		
K01	_	.010-1.28 (band range)		
K03	Third	1.92		
K07	Seventh	4.48		
K11	Eleventh	7.04		
K15	Fifteenth	9.60		
K19	Nineteenth	12.16		
K23	Twenty-third	14.72		
K27	Twenty-Seventh	17.28		

Depending on which H options are installed, the number of filters and switches may be less than what is shown on Service Sheet 1. The switches and filters will have the same reference designations as those on Service Sheet 1.

For example:

If the switch and filter options were H02,K07,K11 then the reference designators would be the following:

S2 and FL3 are the reference designators for one switch and filter (K07).

S3 and FL4 are the reference designators for the other switch and filter (K11).

The control wires associated with S2 and S3 will be different from those on Service Sheet 1. The switch, whose filter has the lowest center frequency, will have control wires for band one (BA1, NBA1). Any other switches will be assigned control wires in ascending order, according to the filter center frequency.

Option H30 gives the instrument AM noise measurement capabilities and is the same as option 130 as shown on Service Sheet 1.

Switch \$8 is installed for option K01 only.

APPENDIX C

Phase Noise Measurement Correction Factors

Once the phase noise measurement system is set up, calibrated and the signal at the NOISE SPECTRUM OUTPUT is measured on a spectrum analyzer, correction factors are added to express the output in terms of \mathcal{L}_f . \mathcal{L}_f is defined as follows:

$$\mathcal{L}_{f} = \frac{\text{power density (in one phase modulation sideband)}}{\text{total signal power}}$$

This appendix explains the correction factors, that are summed with the measured noise level to give the actual amount of phase noise.

NORMALIZATION TO 1 HZ EQUIVALENT NOISE BANDWIDTH

A spectrum analyzer's resolution bandwidth is not necessarily equivalent to the noise bandwidth. It is possible for a spectrum analyzer to have a resolution bandwidth which equals the noise bandwidth. The Field Effect Transistor (F.E.T.) spectrum analyzer is one example where the resolution bandwidth of the spectrum analyzer equals the noise bandwidth. The noise bandwidth is defined as the bandwidth of an ideal rectangular filter having the same power response as the actual IF filter in the spectrum analyzer. The definition of \mathcal{L}_f requires normalization of the single sideband phase noise to an equivalent 1 Hz noise bandwidth. For a first approximation, most Hewlett-Packard spectrum analyzers have a noise bandwidth approximately 1.2 times the nominal 3 dB resolution bandwidth setting. Therefore the resolution bandwidth multiplied by 1.2 is the equivalent noise bandwidth.

The equivalent noise bandwidth is expressed as a 1 Hz equivalent noise bandwidth by using the relationship shown below:

Correction factor to convert the spectrum analyzer's resolution bandwidth to a 1 Hz equivalent noise bandwidth = $10 \log ((BW \times 1.2)/1 \text{ Hz})$.

where: BW is the resolution bandwidth in Hz that the spectrum analyzer is set to during the measurement.

Therefore, the resolution bandwidth used to make the phase noise measurement is normalized to a 1 Hz equivalent noise bandwidth by the following equation:

Correction factor to convert the spectrum analyzer's resolution bandwidth to a 1 Hz equivalent noise bandwidth = $10 \log (BW \times 1.2)$.

The 1 Hz equivalent noise bandwidth correction is then subtracted from the measured noise level.

This correction factor is for Hewlett-Packard spectrum analyzers only. If another spectrum analyzer is being used, the noise bandwidth of that spectrum analyzer will have to be determined. The 1 Hz equivalent noise bandwidth can then be calculated, for the resolution bandwidth being used to make the phase noise measurement.

NOTE

For best accuracy, the equivalent noise bandwidth should be measured. Hewlett-Packard has an application note that describes how to measure the equivalent noise bandwidth. To receive the application note order AN 150-4 using part number HP 5952-1147.

CALIBRATION ATTENUATION

The response of the system (Mixer/Phase Detector, Low Pass Filter and Low Noise Amplifier) is calibrated before each phase noise measurement. The 5 to 1280 MHz input is offset from the frequency of the IF output (signal under test minus the center frequency of the Band Range chosen). This produces a beat note signal at the NOISE SPECTRUM OUTPUTS. From this beat note signal, the mixer/phase detector constant $K\phi$ is determined. $K\phi$ is the slope of the sine wave at the zero crossings.

Attenuation is added during the calibration process to avoid overloading the Low Noise Amplifier (LNA) or the baseband spectrum analyzer. The LNA is designed to amplify lower level signals, not high level beat notes. Also, best accuracy is obtained if the spectrum analyzer settings are not changed during calibration and measurement. This can be accomplished by setting the attenuation, so the noise floor will be in the upper portion of the spectrum analyzer display.

The amount of attenuation added in the R path (5 to 1280 MHz signal) of the mixer/phase detector is translated to the output. Thus, the attenuation applied to the 5 to 1280 MHz input reduces the mixer/phase detector output by that amount. After calibration the attenuation is removed and a noise measurement is made. The amount of attenuation added during calibration must be subtracted from the measured noise level.

£, CONVERSION FACTOR

Two signals at identical frequencies and nominally 90 degrees out of phase (known as phase quadrature) are input to the mixer/phase detector. At quadrature, the output spectrum of the mixer/phase detector is the sum of the inputs, which is filtered out, and a dc signal with a small fluctuating ac voltage. The small fluctuating ac voltage is linearly proportional to the fluctuating phase difference between the input signals.

The mixer/phase detector has a conversion factor, $K\phi$ that is called the phase detector constant. This $K\phi$ factor is the ratio of the ac voltage fluctuations, out of the mixer/phase detector, and the phase fluctuations between the two signals input to the mixer/phase detector.

A beat note condition is set up during calibration for use in determining the K ϕ phase constant or V peak. The value of K ϕ is equal to the slope of the sine wave output from the mixer/phase detector when a beat note is present. The slope of a sine wave at the zero crossings is equal to the peak amplitude of the signal. A spectrum analyzer measures the root mean square value of a signal instead of the peak amplitude. The equation "V peak = $\sqrt{2} \times V$ rms" is used to correct the spectrum analyzer reading. The preceding equation expressed logarithmically to correspond to the power readings on the spectrum analyzer is as follows:

$$\begin{array}{l} 10 log(V_{peak})^2 = 10 log(\sqrt{2} \; V_{rms})^2 \\ = 10 log \; V_{rms}^2 + 10 \; log \; (\sqrt{2})^2 \\ = 10 log \; V_{rms}^2 + 3 \; dB \end{array}$$

The logarithmically expressed equation shows that the spectrum analyzer display is $3\,\mathrm{dB}$ less than the peak signal. Since \mathcal{L}_f is the ratio of the power in one phase modulation side band to the power in the carrier, $3\,\mathrm{dB}$ is subtracted from the noise power level on the spectrum analyzer display.

When the two inputs to a mixer are in phase quadrature and the sum product is filtered out, the mixer operates as a phase detector. All energy in the phase modulated sidebands is detected by the mixer. The detected phase modulation sidebands represent the phase modulation on the test signal (to within 0.2 dB) when the following condition is met:

The energy in the phase modulation sidebands of the reference signal, is at least 15 dBm lower, than the energy in the phase modulation sidebands of the test signal.

NOTE

When the noise of the reference signal is less than 15 dB below the test signal, the measurement error will have to be determined. To determine the measurement error, use the following formula:

$$error(dB) = 10log\left[1 + antilog \frac{\pounds_{ref} - \pounds_{dut}}{10}\right]$$

 $\mathcal{L}_{ref} = noise power of the reference$

 $\mathcal{L}_{dut} = noise power of the device under test$

The error has been tabulated in the following table for several values of the noise power differences.

$\mathcal{L}_{dut} - \mathcal{L}_{ref}(dB)$	0	1	2	3	4	5	10	15
correction (dB)	3.0	2.5	2.1	1.8	1.5	1.2	0.4	0.2

The output of the mixer is then the spectral density of the phase modulation sidebands on the test signal frequency which is called $S\phi f$. A more familiar quantity is the ratio of the energy in one phase modulating sideband to total power in the test signal, \mathcal{L}_f . To convert from $S\phi f$ to \mathcal{L}_f we use the following equation:

$$\mathcal{L}_{\mathbf{f}} = 1/2 \, \mathbf{S} \phi \mathbf{f}$$

Therefore another 3 dB is subtracted from the measured noise power level.

The total \mathcal{L}_f conversion factor is -6 dB. For the \mathcal{L}_f conversion factor subtract 6 dB from the measured noise level.

CORRECTION FOR LOG AMPLIFIERS AND PEAK DETECTORS IN ANALOG SPECTRUM ANALYZERS

The spectrum analyzer's detection system is optimized for sine waves; for noise measurements some corrections must be made. In most analog spectrum analyzers there is a log amplifier followed by a peak detector. A peak or envelope detector used to measure random noise results in a reading lower than the true rms value of the average noise (typically about 1.05 dB lower). The log shaping tends to amplify noise peaks less than the rest of the noise signal, resulting in a detected signal which is smaller than its true rms value. The correction for the log display mode combined with the detector characteristics gives a total correction for Hewlett-Packard analog spectrum analyzers of 2.5 dB. The correction of 2.5 dB is added to any random noise measured in the log display. For spectrum analyzers other than those made by Hewlett-Packard, the correction factor for the log amplifier and peak detector will have to be determined.

FREQUENCY DISCRIMINATOR CORRECTION FACTOR

The frequency discriminator method outputs a voltage variation proportional to the frequency deviations of the signal under test. The proportionality of the discriminator output changes linearly with frequency offsets from the carrier. Calibration is performed at one modulating frequency to find the sensitivity of the discriminator. The discriminator output is then normalized for all modulating frequencies with the following equation:

Correction to convert frequency fluctuations at any offset to $\,\pounds_{\,f} = -20\,\log\,(f_{off}/f_{cal})\,$ where:

f_{cal} is the modulating frequency used to calibrate the frequency discriminator.

f_{off} is the modulating frequency where the phase noise information is desired (offset frequency from the carrier).

FREQUENCY DISCRIMINATOR CORRECTION FACTOR (cont'd)

After the frequency discriminator is calibrated at one frequency (f_{cal}) and the phase noise information is measured at the desired offset frequency from the carrier (f_{off}) , the correction factor is calculated. Insert the calibration frequency (f_{cal}) and the modulating frequency offset (f_{off}) into the above equation. Sum this quantity with the measured noise level.

APPENDIX D

Phase Lock Loop Characterization

A Phase Lock Loop forces the voltage controlled oscillator (VCO) to phase-track the reference for frequency offsets less than the bandwidth of the Phase Lock Loop. This tracking inside the phase lock loop bandwidth results in suppression of phase noise at the output of the phase detector. This property normally limits a phase noise measurement to offsets from the carrier greater than the loop bandwidth. However, the Carrier Noise Test Set enables the Phase Lock Loop to be characterized. When the phase lock loop is characterized the bandwidth of the phase lock loop and the amount of noise suppression within the phase lock loop can be determined.

The Carrier Noise Test Set's Loop Test Port Input allows a signal—for example, a random noise source, a tracking generator or a variable frequency sine wave—to be applied to the loop. Then, by measuring the response of the loop to the signal being input, the transfer characteristic of the phase lock loop can be determined. During characterization, the VCO and reference remain locked and in quadrature; that is, the loop is characterized in the same state that it was in during the phase noise measurement.

The characterized phase lock loop yields two important pieces of information, the phase lock loop bandwidth and the amount of noise suppression within the phase lock loop. The loop bandwidth designates the offset frequencies for which an uncorrected phase noise measurement can be made. The measured loop noise suppression versus offset frequency is used to correct the value of noise measured on the device under test, when the measurement was made inside the loop bandwidth.

PROCEDURE

The following discussion describes two methods for determining the loop transfer characteristic of the phase lock loop.

Use the following procedure when the signal input at the LOOP TEST PORT IN connector is from a random noise source or a tracking generator:

1. Calculate the nominal loop bandwidth using one of the following formulas. The formula used will depend on the method used for phase locking.

$$nominal loop bandwidth = \frac{LBF \times f_{dut}}{10^{10}}$$

(Using the 10 MHz crystal oscillator, that drives the 640 MHz reference, for phase locking. The crystal must have a tuning range of one (1) part in 10⁷ Hz.)

nominal loop bandwidth =
$$\frac{LBF \times FM \text{ peak deviation}}{10^3}$$

(Using the DC-FM of the 5 to 1280 MHz tunable source for phase locking)

$$LBF = Lock Bandwidth Factor$$

 $f_{dut} = Frequency of device under test$

With the nominal loop bandwidth known it will be easier to set the controls on the spectrum analyzer to view the loop transfer characteristic.

- 2. When determining the loop transfer characteristic, the loop must be in the same condition it was in when the phase noise measurement was made. For example, the loop should be locked and in phase quadrature; the Lock Bandwidth Factor must be set to the same position it was set to during the phase noise measurement.
- 3. Using a random noise source or tracking generator, input a signal at the LOOP TEST PORT IN connector, on the rear panel of the Carrier Noise Test Set. Adjust the input level, so the front panel phase lock indicator displays the center green LED with a red LED on either side.
- 4. Connect the LOOP TEST PORT OUT connector, on the rear panel of the Carrier Noise Test Set, to a spectrum analyzer with an appropriate frequency range and bandwidth. Adjust the spectrum analyzer controls, such as frequency span, to view the loop transfer characteristic. The nominal loop bandwidth, calculated in step 1, should give a good indication of where to set the frequency span.
- 5. Determine the amount of noise suppression using the following example:

Figure D-1 shows a typical phase lock loop transfer characteristic, with a bandwidth of about 90 Hz. At a 10 Hz offset, the loop suppresses the noise 20 dB. Prior to adding the signal, the device under test yielded a noise measurement of $-90~\mathrm{dBc/Hz}$ at 10 Hz. The loop noise suppression correction is added to this number, yielding the actual phase noise of the device under test at a 10 Hz offset:

measured noise level: -90 dBc/Hzloop suppressed noise: +20 dBactual noise level: -70 dBc/Hz

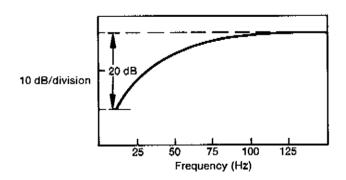


Figure D-1. Typical Phase Lock Loop Filter Transfer Characteristic

PROCEDURE

Use the following procedure when the signal input at the LOOP TEST PORT IN connector is from a signal source that does not track the spectrum analyzer.

1. Calculate the nominal loop bandwidth using one of the following formulas. The formula used will depend on the method used for phase locking.

$$nominal\ loop\ bandwidth = \frac{LBF \times f_{dut}}{10^{10}}$$

(Using the 10 MHz crystal oscillator, that drives the 640 MHz reference, for phase locking. The crystal must have a tuning range of one (1) part in 10⁷ Hz.)

nominal loop bandwidth =
$$\frac{LBF \times FM \text{ peak deviation}}{10^3}$$

(Using the DC-FM of the 5 to 1280 MHz tunable source for phase locking)

LBF = Lock Bandwidth Factor
$$f_{dut}$$
 = Frequency of device under test

With the nominal loop bandwidth known it will be easier to set the controls on the spectrum analyzer to view the loop transfer characteristic.

- 2. When determining the loop transfer characteristic, the loop must be in the same condition it was in when the phase noise measurement was made. For example, the loop should be locked and in phase quadrature; the Lock Bandwidth Factor must be set to the same position it was set to during the phase noise measurement.
- 3. Using the signal source, input a signal at the LOOP TEST PORT IN connector, on the rear panel of the Carrier Noise Test Set. Adjust the input level, so the front panel phase lock indicator displays the center green LED with a red LED on either side.
- 4. Connect the LOOP TEST PORT OUT connector, on the rear panel of the Carrier Noise Test Set, to a spectrum analyzer with an appropriate frequency range and bandwidth.
- 5. Plot the loop transfer characteristic by taking point to point readings starting at 0 Hz and going out to the loop bandwidth limit. The offset from point to point is up to the user. The spectrum analyzer may have to be adjusted each time a reading is taken for best accuracy.
- 6. Determine the amount of noise suppression using the following example:

Figure D-1 shows a typical phase lock loop transfer characteristic, with a bandwidth of about 90 Hz. At a 10 Hz offset, the loop suppresses the noise 20 dB. Prior to adding the signal, the device under test yielded a noise measurement of $-90 \, \mathrm{dBc/Hz}$ at 10 Hz. The loop noise suppression correction is added to this number, yielding the actual phase noise of the device under test at a 10 Hz offset:

measured noise level:

 $-90 \, dBc/Hz$

loop suppressed noise:

+20 dB

actual noise level:

 $-70 \, \mathrm{dBc/Hz}$